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Abstract

Many machine reading approaches, from
shallow information extraction to deep
semantic parsing, map natural language
to symbolic representations of meaning.
Representations such as first-order logic
capture the richness of natural language
and support complex reasoning, but often
fail in practice due to their reliance on log-
ical background knowledge and the diffi-
culty of scaling up inference. In contrast,
low-dimensional embeddings (i.e. distri-
butional representations) are efficient and
enable generalization, but it is unclear how
reasoning with embeddings could support
the full power of symbolic representations
such as first-order logic. In this proof-of-
concept paper we address this by learning
embeddings that simulate the behavior of
first-order logic.

1 Introduction

Much of the work in machine reading follows an
approach that is, at its heart, symbolic: language
is transformed, possibly in a probabilistic way,
into a symbolic world model such as a relational
database or a knowledge base of first-order for-
mulae. For example, a statistical relation extractor
reads texts and populates relational tables (Mintz
et al., 2009). Likewise, a semantic parser can
turn sentences into complex first-order logic state-
ments (Zettlemoyer and Collins, 2005).

Several properties make symbolic representa-
tions of knowledge attractive as a target of ma-
chine reading. They support a range of well under-
stood symbolic reasoning processes, capture se-
mantic concepts such as determiners, negations

and tense, can be interpreted, edited and curated
by humans to inject prior knowledge. However, on
practical applications fully symbolic approaches
have often shown low recall (e.g. Bos and Markert,
2005) as they are affected by the limited coverage
of ontologies such as WordNet. Moreover, due to
their deterministic nature they often cannot cope
with noise and uncertainty inherent to real world
data, and inference with such representations is
difficult to scale up.

Embedding-based approaches address some of
the concerns above. Here relational worlds are de-
scribed using low-dimensional embeddings of en-
tities and relations based on relational evidence in
knowledge bases (Bordes et al., 2011) or surface-
form relationships mentioned in text (Riedel et al.,
2013). To overcome the generalization bottleneck,
these approaches learn to embed similar entities
and relations as vectors close in distance. Subse-
quently, unseen facts can be inferred by simple and
efficient linear algebra operations (e.g. dot prod-
ucts).

The core argument against embeddings is their
supposed inability to capture deeper semantics,
and more complex patterns of reasoning such
as those enabled by first-order logic (Lewis and
Steedman, 2013). Here we argue that this does
not need to be true. We present an approach that
enables us to learn low-dimensional embeddings
such that the model behaves as if it follows a com-
plex first-order reasoning process—but still oper-
ates in terms of simple vector and matrix repre-
sentations. In this view, machine reading becomes
the process of taking (inherently symbolic) knowl-
edge in language and injecting this knowledge into
a sub-symbolic distributional world model. For
example, one could envision a semantic parser that
turns a sentence into a first-order logic statement,
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Figure 1: Information extraction (IE) and semantic
parsing (SP) extract factual and more general log-
ical statements from text, respectively. Humans
can manually curate this knowledge. Instead of
reasoning with this knowledge directly (A) we in-
ject it into low dimensional representations of en-
tities and relations (B). Linear algebra operations
manipulate embeddings to derive truth vectors (C),
which can be discretized or thresholded to retrieve
truth values (D).

just to then inject this statement into the embed-
dings of relations and entities mentioned in the
sentence.

2 Background

Figure 1 shows our problem setup. We as-
sume a domain of a set of entities, such as
SMITH and CAMBRIDGE, and relations among
these (e.g. profAt(·, ·)). We start from a
knowledge base of observed logical statements,
e.g., profAt(SMITH, CAMBRIDGE) or ∀x, y :
profAt(x, y) =⇒ worksFor(x, y). These state-
ments can be extracted from text through informa-
tion extraction (for factual statements), be the out-
put from a semantic parsing (for first-order state-
ments) or come from human curators or external
knowledge bases.

The task at hand is to predict the truth
value of unseen statements, for example
worksFor(SMITH, CAMBRIDGE). Assuming we
have the corresponding formulae, logical infer-
ence can be used to arrive at this statement (arrow
A in Figure 1). However, in practice the relevant
background knowledge is usually missing. By
contrast, a range of work (e.g. Bordes et al., 2011;
Riedel et al., 2013) has successfully predicted
unseen factual statements by learning entity and
relation embeddings that recover the observed
facts and generalize to unseen facts through
dimensionality reduction (B). Inference in these
approaches amounts to a series of algebraic

operations on the learned embeddings that returns
a numeric representation of the degree of truth
(C), which can be thresholded to arrive back at a
true or false statement (D) if needed.

Our goal in this view is to generalize (B) to al-
low richer logical statements to be recovered by
low-dimensional embeddings. To this end we first
describe how richer logical statements can be em-
bedded at full dimension where the number of di-
mensions equals to the number of entities in the
domain.

2.1 Tensor Calculus
Grefenstette (2013) presents an isomorphism be-
tween statements in predicate logic and expres-
sions in tensor calculus. Let [·] denote this map-
ping from a logical expression F to an expression
in tensor algebra. Here, logical statements evaluat-
ing to true or false are mapped to [true] :=

> =
[
1 0

]T and [false] := ⊥ =
[
0 1

]T re-
spectively.

Entities are represented by logical constants and
mapped to one-hot vectors where each component
represents a unique entity. For example, let k = 3
be the number of entities in a domain, then SMITH

may be mapped to [SMITH] =
[
1 0 0

]T . Unary
predicates are represented as 2×k matrices, whose
columns are composed of > and ⊥ vectors. For
example, for a isProfessor predicate we may get

[isProfessor ] =

[
1 0 1
0 1 0

]
.

In this paper we treat binary relations as unary
predicates over constants 〈X, Y〉 that correspond to
pairs of entities X and Y in the domain.1

The application of a unary predicate to a con-
stant is realized through matrix-vector multiplica-
tion. For example, for profAt and the entity pair
〈X, Y〉 we get

[profAt(〈X, Y〉)] = [profAt ] [〈X, Y〉] .

In Grefenstette’s calculus, binary boolean oper-
ators are mapped to mode 3 tensors. For example,
for the implication operator holds:

[ =⇒ ] :=

[
1 0 1 1
0 1 0 0

]
.

Let A and B be two logical statements that,
when evaluated in tensor algebra, yield a vector

1This simplifies our exposition and approach, and it can
be shown that both representations are logically equivalent.



in {>,⊥}. The application of a binary operator
to statements A and B is realized via two con-
secutive tensor-vector products in their respective
modes (see Kolda and Bader (2009) for details),
e.g.,

[A =⇒ B] := [ =⇒ ]×1 [A]×2 [B] .

3 Method

Grefenstette’s mapping to tensors exactly recov-
ers the behavior of predicate logic. However, it
also inherits the lack of generalization that comes
with a purely symbolic representation. To over-
come this problem we propose an alternate map-
ping. We retain the representation of truth val-
ues and boolean operators as the 2 × 1 and the
2 × 2 × 2 sized tensors respectively. However,
instead of mapping entities and predicates to one-
hot representations, we estimate low-dimensional
embeddings that recover the behavior of their one-
hot counterparts when plugged into a set of tensor-
logic statements.

In the following we first present a general learn-
ing objective that encourages low-dimensional
embeddings to behave like one-hot representa-
tions. Then we show how this objective can be
optimized for facts and implications.

3.1 Objective
Let R be the set of all relation embeddings and
P be the set of all entity pair embeddings. Given
a knowledge base (KB) of logical formulae K
which we assume to hold, the objective is

min
[p]∈P, [R]∈R

∑
F∈K

‖[F ]−>‖2 . (1)

That is, we prefer embeddings for which the given
formulae evaluate to the vector representation for
truth. The same can be done for negative data by
working with ⊥, but we omit details for brevity.

To optimize this function we require the gradi-
ents of ‖[F ]−>‖2 terms. Below we discuss these
for two types of formulae: ground atoms and first-
order formulae.

3.2 Ground Atoms
The KB may contain ground atoms (i.e. facts) of
the form F = R(p) for a pair of entities p and a
relation R. These atoms correspond to observed
cells in an entity-pair-relation matrix, and inject-
ing these facts into the embedding roughly corre-
sponds to matrix factorization for link prediction
or relation extraction (Riedel et al., 2013).

Let η̂F := ([F ]−>) / ‖[F ]−>‖2, then it is
easy to show that the gradients with respect to re-
lation embedding [R] and entity pair embedding
[p] are

∂/∂ [p] = [R] η̂F and ∂/∂ [R] = η̂F ⊗ [p] .

3.3 First-order Formulae
Crucially, and in contrast to matrix factorization,
we can inject more expressive logical formulae
than just ground atoms. For example, the KB
K may contain a universally quantified first-order
rule such as ∀x : R1(x) =⇒ R2(x). Assum-
ing a finite domain, this statement can be unrolled
into a conjunction of propositional statements of
the form F = R1(p) =⇒ R2(p), one for each
pair p. We can directly inject these propositional
statements into the embeddings, and their gradi-
ents are straightfoward to derive. For example,

∂/∂ [R1] = (([ =⇒ ]×2 [R2(p)]) η̂F )⊗ [p] .

3.4 Learning and Inference
We learn embeddings for entity pairs and relations
by minimizing objective 1 using stochastic gradi-
ent descent (SGD). To infer the (two-dimensional)
truth value (C in Figure 1) of a formula F in em-
bedded logic we evaluate [F ]. An easier to intpret
one-dimensional representation can be derived by(

〈[F ] ,
[
1 −1

]T 〉+ 1
)
/2,

followed by truncation to the interval [0, 1]. Other
ways of projecting [F ] to R, such as using cosine
similarity to >, are possible as well.

4 Experiments

We perform experiments on synthetic data defined
over 7 entity pairs and 6 relations. We fix the em-
bedding size k to 4 and train the model for 100
epochs using SGD with `2-regularization on the
values of the embeddings. The learning rate and
the regularization parameter are set to 0.05.

The left part of Table 1 shows the observed
(bold) and inferred truth values for a set of fac-
tual staments of the form R(p), mapped to R as
discussed above. Due to the generalization ob-
tained by low-dimensional embeddings, the model
infers that, for example, SMITH is an employee
at CAMBRIDGE and DAVIES lives in LONDON.
However, we would like the model to also capture
that every professor works for his or her university



With Factual Constraints With Factual and First-Order Constraints
profAt worksFor employeeAt registeredIn livesIn bornIn profAt worksFor employeeAt registeredIn livesIn bornIn

〈JONES, UWASH〉 1.00 1.00 1.00 0.00 0.18 0.01 0.98 0.98 0.95 0.03 0.00 0.04
〈TAYLOR, UCL〉 1.00 1.00 0.98 0.00 0.20 0.00 0.98 0.96 0.95 0.05 0.00 0.06

〈SMITH, CAMBRIDGE〉 0.98 > 0.00 > 0.64 0.75 0.07 0.72 0.92 > 0.97 > 0.89 0.04 0.04 0.05
〈WILLIAMS, OXFORD〉 ⊥ 0.02 1.00 0.08 0.00 0.93 0.02 ⊥ 0.05 0.91 0.02 0.05 0.87 0.06
〈BROWN, CAMBRIDGE〉 ⊥ 0.00 0.97 0.02 ⊥ 0.01 0.95 0.06 ⊥ 0.01 0.90 0.00 ⊥ 0.07 0.92 0.07
〈DAVIES, LONDON〉 0.00 0.00 0.00 0.99 > 0.50 1.00 0.01 0.00 0.00 0.98 > 0.98 0.97
〈EVANS, PARIS〉 0.00 0.00 0.00 1.00 > 0.48 1.00 0.00 0.00 0.00 0.97 > 1.00 0.96

Table 1: Reconstructed matrix without (left) and with (right) the first-order constraints profAt =⇒
worksFor and registeredIn =⇒ livesIn . Predictions for training cells of factual constraints [R(p)] =
> are shown in bold, and true and false test cells are denoted by > and ⊥ respectively.

and that, when somebody is registered in a city, he
or she also lives in that city.

When including such first-order constraints
(right part of Table 1), the model’s predictions
improve concerning different aspects. First, the
model gets the implication right, demonstrating
that the low-dimensional embeddings encode first-
order knowledge. Second, this implication transi-
tively improves the predictions on other columns
(e.g. SMITH is an employee at CAMBRIDGE).
Third, the implication works indeed in an asym-
metric way, e.g., the model does not predict that
WILLIAMS is a professor at OXFORD just because
she is working there.

5 Related Work

The idea of bringing together distributional se-
mantics and formal logic is not new. Lewis and
Steedman (2013) improve the generalization per-
formance of a semantic parser via the use of dis-
tributional representations. However, their target
representation language is still symbolic, and it is
unclear how this approach can cope with noise and
uncertainty in data.

Another line of work (Clark and Pulman, 2007;
Mitchell and Lapata, 2008; Coecke et al., 2010;
Socher et al., 2012; Hermann and Blunsom, 2013)
uses symbolic representations to guide the com-
position of distributional representations. Read-
ing a sentence or logical formula there amounts
to compositionally mapping it to a k-dimensional
vector that then can be used for downstream tasks.
We propose a very different approach: Reading a
sentence amounts to updating the involved entity
pair and relation embeddings such that the sen-
tence evaluates to true. Afterwards we cannot use
the embeddings to calculate sentence similarities,
but to answer relational questions about the world.

Similar to our work, Bowman (2014) provides
further evidence that distributed representations

can indeed capture logical reasoning. Although
Bowman demonstrates this on natural logic ex-
pressions without capturing factual statements,
one can think of ways to include the latter in
his framework as well. However, the ap-
proach presented here can conceptually inject
complex nested logical statements into embed-
dings, whereas it is not obvious how this can be
achieved in the neural-network based multi-class
classification framework proposed by Bowman.

6 Conclusion

We have argued that low dimensional embeddings
of entities and relations may be tuned to simu-
late the behavior of logic and hence combine the
advantages of distributional representations with
those of their symbolic counterparts. As a first
step into this direction we have presented an ob-
jective that encourages embeddings to be consis-
tent with a given logical knowledge base that in-
cludes facts and first-order rules. On a small syn-
thetic dataset we optimize this objective with SGD
to learn low-dimensional embeddings that indeed
follow the behavior of the knowledge base.

Clearly we have only scratched the surface
here. Besides only using toy data and logical for-
mulae of very limited expressiveness, there are
fundamental questions we have yet to address.
For example, even if the embeddings could en-
able perfect logical reasoning, how do we pro-
vide provenance or proofs of answers? More-
over, in practice a machine reader (e.g. a semantic
parser) incrementally gathers logical statements
from text— how could we incrementally inject this
knowledge into embeddings without retraining the
whole model? Finally, what are the theoretical
limits of embedding logic in vector spaces?
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