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Abstract

Language models are very useful in many applications such as speech recognition,

machine translation and text summarization. Recently, deep learning have fueled

language modeling research in the past years. This dissertation examines the role

of Recurrent Neural Networks in modeling sequential data, and present four novel

neural network architectures, namely Recurrent Neural Network N-gram, Attention,

Key-Value and Key-Value-Predict models. This study offers three hypotheses: (1)

does incorporating the history context to recurrent neural networks will improve

the performance of language model systems?; (2) does storing the memory in Key-

Value-Predict structure will improve the performance of language model?; (3) does

the attention mechanism is able to capture some linguistic phenomena?

Our most important contributions are four novel state-of-the-art models that

not only outperform current state-of-the-art approaches, but also are able to give

answers on our research questions. The presented models are able to deal with

the problem of memory compression in recurrent neural network by incorporating

the history context. Finally, we evaluate our models against current state-of-the-art

techniques on two public datasets: LAMBADA and English Penn Treebank, and on

our own dataset from Wikipedia articles.

For accompanying code, see

https://www.dropbox.com/s/r3ogm7nvdxtnner/ML-Thesis-Code.

zip

https://www.dropbox.com/s/r3ogm7nvdxtnner/ML-Thesis-Code.zip
https://www.dropbox.com/s/r3ogm7nvdxtnner/ML-Thesis-Code.zip
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Chapter 1

Introduction

In this chapter we give a brief introduction to the problem being discussed in this

dissertation, describing reasons and motivations behind it. Furthermore, we define

research hypothesis which we wish to address in this thesis. Finally, we outline the

content of the project.

1.1 Language Modeling
Language Modeling (LM) has been a crucial task in Natural Language Processing

(NLP) and Language Understanding. They were originally developed for the prob-

lem of speech recognition [28, 39], and they are also widely used in many other

fundamental tasks in NLP such as machine translation [8, 63] or text summariza-

tion [17, 48]. Training better language models often improves the performance of

downstream task such as BLEU score for machine translation or word error rate for

speech recognition.

Assume that we have a corpus, which is a set of sentences in some language.

For example, we may have a large amount of data from the web, or may have a

data from the BBC News. Given this corpus, the language model parameters might

be estimated. Then, we will define ν as a set of all words in some language. For

example, for English language we might have

ν={the, home, big, I, house, going, am, is . . .}

In practise, the size of ν is finite and can be large. It might contain even tens of

thousands of words.



14 Chapter 1. Introduction

A language model is defined as a probability distribution p(w1,w2, . . . ,wn)

over a sequence of words from ν. For example, a language model is expected

to assign a higher probability to the house is big than to big the is house, because

of the correct order of words. A language model also supports predicting the com-

pletion of a sentence. For instance, they are expected to assign higher probability

to I am going home than to I am going house. Moreover, a language model helps in

speech recognition task to distinguish between phrases that sound similar. For ex-

ample, I helped Google recognize speech and I helped Google wreck a nice beach

are pronounced almost the same but have different meaning and the first one is more

meaningful.

Furthermore, language models are also able to extract a knowledge that a

dataset may contain. For example, Serban et al. [51] trained the language model on

movie subtitles and these models are able to generate a basic answers to questions

about facts, people and object colors. In addition, recently proposed a sequence-

to sequence models use a conditional language models [41] as their fundamental

component to solve a machine translation tasks [59, 12]. Language Models are also

widely used in text [58] and video [54] generation tasks.

1.2 Motivation

People were always dreaming about machines that are even more intelligent than

humans. One of the key part of considering machine as intelligent is ability to com-

municate with human. We can think about several ways which leads us towards text

and speech understanding by intelligent machines - we can start by understanding

basic commands as make coffee for me, then translating text from one language to

another which allows to communicate with people speaking in different languages,

and then answer questions about facts from the text, finally reaching machine that

can communicate with humans at the same level as other human beings.

Assuming that out goal is to build a machine that can communicate with human

in natural language. The state-of-the art methods of doing it use a neural networks

(called deep learning), which mimic learning process of humans and are a simple
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abstraction of human brain. In summary, the main motivation behind this work is

to improve the ability of language understanding by machines.

1.3 Objectives

Deep learning made a big impact on language modeling research last few years.

More technically, Recurrent Neural Networks (RNNs) with Long Short-Term Mem-

ory (LSTM) [26] are current state-of-the art Language Modeling approaches. Our

main goal is to analyse and implement current state-of-the-art neural network ap-

proaches to language modeling and propose a potential improvements of current

approaches. Therefore, there are three main hypothesis which we wish to address

in this thesis.

First, a bottleneck associated with RNNs is memory compression problem.

Since the input sequence is compressed and blended into a single dense vector,

it becomes difficult to accurately memorize sequences [72]. As a result, long se-

quences are generalized poorly by the network, while the memory is wasted for a

short sequences. We hypothesize that incorporating the history context to recurrent

neural networks will improve the performance of language model systems.

Second, can we use recently proposed idea of Key-Value Memory Network

[42] in language modeling system? Key-value paired memories, which are used

in question-answering task, are a generalization of the way context are stored in

memory. The reading stage is based on value memory, and the lookup stage is the

key memory. We hypothesize that storing memory in more complicated structure

Key-Value-Predict will give more flexibility in predicting the next word and will

improve the performance.

Third, the source of RNNs outstanding performance is poorly understood. It

is difficult to understand and interpret the architecture of RNNs from the linguistic

point of view [31]. As a result, the lack of this interpretability limits the ability to

design better architectures. We hypothesize that attention mechanism is able to give

us interpretation which previous words in the sequence were used to predict the next

one.
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1.4 Structure of the Thesis
In this thesis we tackles all our hypothesis simultaneously. In Chapter 2 we present

the overview of language modeling methods. Firstly, we describe the classical ap-

proaches that have been widely used. Then, more recent deep learning approaches

and their applications to language modeling are presented. Chapter 3 covers our

novel methods for language modeling task. First we present our Recurrent Neural

Network N-gram model which combine the strengths of neural network in gener-

alizing with the memorization and scalability of an classical N-gram model. Then

we proposed three attentive models: Attention, Key-Value and Key-Value-Predict.

Following that, we take a look at number of related works and describe similari-

ties and differences between them and our architectures. In Chapter 4 we examine

the proposed approaches on real-world datasets, analyse along various linguistic

dimensions that our model captures and test our hypothesis. Finally, Chapter 5

summarizes our results and discusses the future work.



Chapter 2

Background

This chapter aims to give an overview of the approaches to language modeling prob-

lem by firstly discussed classical approaches that have been successfully used, and

then looking at more recent state-of-the art deep learning techniques and their ap-

plications to the problem of Language Modeling. As Jozefowicz discussed in [31],

Deep Learning and Recurrent Neural Networks have changed language modeling

research in the past years. These techniques outperforms the standard approaches

that have been used for years.

The chapter start by discussing Language Models evaluation metrics, then clas-

sical widely used learning approaches of building LMs are presented. Following

that, different types of neural networks and their applications to LMs have been ex-

plored: feedforward neural network, recurrent neural network and long short-term

memory network. Moreover, we explain problem of capturing certain linguistic

phenomena. Finally, we describe attention mechanism as one way of solving this

problem.

2.1 Evaluation of Language Models
In the literature, language models are evaluated by two most common metrics. First,

they are estimate by word error rate. Second, most commonly, they are evaluated by

computing the perplexity. Both metrics are a measurement of how well a language

model predicts a sample.

The word error rate is used to evaluate the performance of speech recognition
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system. It can be computed as:

WER =
S+D+ I

N
, (2.1)

where S is the number of substitutions, D deletions, I insertions between prediction

of the model and the reference transcription. Word error rate is computationally

expensive to calculate and it is used only in speech recognition systems, which

makes it difficult to compare language models from different research sites.

On the other hand, perplexity is the most popular way of evaluating language

models. The perplexity (PPL) of word sequence w can be computed trivially and it

is defined as:

PPL = K

√
∏

1
P(wi|w1...i−1)

= 2−
1
K ∑

K
i=1 log2P(wi|w1...i−1) (2.2)

It can be seen as the inverse of the geometric average probability assigned to each

word in the dataset. A low perplexity means that model is good at predicting the

sample.

2.2 Statistical Language Modeling
To build an efficient language model, we should use a techniques which are spe-

cialized for processing sequential data. Since the total number of possible combi-

nation of words is extremely large, language models are high-dimensional and they

must work on sparse discrete space. Much work has been done to develop models

that work efficiently on sparse space. For example, count-based approaches such

as n-gram models have been successfully used for many years. Furthermore, the

Kneser-Ney smoothed 5-gram model [34] is a strong baseline, which have chal-

lenged neural network language models.

In this section, the statistical language modeling approaches are presented. We

discuss the benefits of using them and also discuss reasons why this approaches

were outperformed by deep learning techniques by looking at their most significant

limitations.
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2.2.1 N-gram Language Model

The earliest successful approach to language modeling was n-gram model. It de-

fines the probability of observing a given sequence of words w1, . . . ,wm as:

P(w1, . . . ,wm) =
m

∏
i=1

P(wi|w1, . . . ,wi−1)≈
m

∏
i=1

P(wi|wi−(n−1), . . . ,wi−1) (2.3)

Training n-gram models is based on maximizing the likelihood which can be

computed simply by counting the frequency of word’s occurrence:

P(wi|w1, . . . ,wi−1) =
count(wi−(n−1), . . . ,wi−1,wi)

count(wi−(n−1), . . . ,wi−1)
(2.4)

In other words, the probability that some word appears after a given sequence

can be estimated as number of times that this sequence augmented with this word di-

vided by frequency of given sequence in the training set. In practise, the probability

is smoothed by assigning some low probability to words that does not appear in the

training corpus [34]. N-gram model use a Markov assumption as an approximation

of the true language model. Current word depends only on n previous words, where

n = 1 refers to unigram (does not take into account history), n = 2 to a bigram,

n = 3 is a trigram and so on.

The most important advantages of n-gram models are simplicity, speed, gen-

erality and ease of scale them efficiently. N-gram is still a good baseline model

for more advanced techniques, not only because they reach low perplexity, but also

because their are computationally much less complex than, for example, neural net-

work models.

However, on the other hand, there are some disadvantages of using n-gram

models. First of all, data sparsity is a big problem in language modeling that refers

to the fact that language has a lot of rare, varied and complex events, that even

using an extremely big corpus, it is not possible to model language accurately using

n-gram. With increasing the parameter N, the number of possible n-grams increases

exponentially, so we need exponentially more data. What is more, n-gram models

use a fixed length of context that is used to predict the next word. As a results, they
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are not able to learn longer context patterns. In addition, n-gram models assign a

low probability to the rare words.

2.2.2 Class Based N-gram Model

One of the most important problem of training high order n-grams model is a data

sparsity. In order to deal with this problem, Class Based Model was proposed. It

allows better generalization to unseen patterns in the training data by assigning each

word to a single class, and then training n-gram model on these classes. See [30]

for more information about techniques of mapping words to certain classes.

Despite the fact that this approach slightly improve the perplexity, it does not

reach a popularity in the real applications. One of the reason is that this class based

models has high complexity during inference and the improvement in perplexity

vanish with increased amout of training data [30].

2.2.3 Cache Language Model

Cache Language Models are design to deal with the problem of representing longer

term patterns. Standard n-gram models assign a very low probability to the rare

words. Cache Language Models used the observation that if certain word have

already occurred in the recent history, the probability of observing it again increases.

It introduces a cache component to standard n-gram model, which allows to deal

with this regularity. It is usually done by training one n-gram model on recent

history and another one on the whole corpus.

The main benefit of language cache models is performance improvement and

easy implementation. On the other hand, the main drawback is that it increases

the word rate rate in speech recognitions systems, which is explained in [19]. If

the speech recognition system decodes incorrectly a word, the cache model might

increase the chance of doing the same mistake again.

2.2.4 Decision Trees Language Models

Decision trees algorithm were first applied to language modeling by Bahl [4]. The

main idea behind them is to split data by asking arbitrary binary questions about the

history. For example, it is possible to divide data by asking if specific word appears



2.3. Neural Network Language Model 21

in the last N words. However, the performance of decision trees is worse than n-

gram models with the same order N [46]. As a result, researches started working on

random forest models, which is a random combination of many decision trees [70].

Despite the fact that random forest models reduce both perplexity and word

error rate compare to Kneser-Ney smoothed 5-gram model, they does not reach a

popularity in the real applications. The disadvantage of this models is a high com-

putational complexity and decreasing improvement for a large amount of training

corpus.

2.3 Neural Network Language Model
Deep learning have been used in language modeling task for a long time. The first

known work of using neural networks to language modeling was done by Jeff Elman

in 1990 [16]. After ten years, neural network language model with a comparison

to classical approaches was proposed by Yoshua Bengio [5], who used feedforward

neural networks with fixed length context. This work was further investigated by

Goodman [20], who showed that it provides a significant improvement compare

to standard approaches (n-grams, class-based models). Later, Holger Shwenk [50],

who followed this approach, has shown that neural network based LMs outperforms

other methods in speech recognition tasks. More recently, Mikolov [39] proposed

a new recurrent neural network based language model (RNN LM) and compared

against good baseline systems. Their results have shown that is is possible to ob-

tain around 50% reduction of perplexity by using a mixture of several RNN LMs,

compared to current state of the art backoff language model.

Although there are several difference in the neural network based language

models that have been widely applied so far, there are some common principles:

• The representations of words is embedded to the fixed length vector.

• A softmax function is used to produced a correctly normalized probability

distribution.

• The cross entropy error is minimized during the training.
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Neural network language models learn both the probability distribution of

given sequence of words and a vector representation, which is called embedding,

for every word in vocabulary. As a results, neural network language model is able

to learn embeddings which carry important linguistic information. For example, if

the representation of words big and large share many attributes, then model will

give similar prediction for the sequence that contains word big or large at the same

position in the sentence. In summary, neural networks have the ability to learn

word representation which carry important linguistic information. As a result, us-

ing learned word embeddings solves the problem of data sparsity and explain better

performance for set of words which have never been seen in the training corpus.

2.3.1 Feedforward Neural Network Based Language Model

Bengio et al. [5] proposed a feedforward neural network architecture (see Fig. 2.1)

which aims to model natural language. The model proposed by Bengio consists of

Figure 2.1: Architecture of Bengio’s neural Language Model [5]



2.3. Neural Network Language Model 23

input, projection, hidden and output layers. First, the input layer takes last n− 1

words from recent history and encodes them using one-hot encoding. As a next

step, the projection layer is used to learned a word embeddings by multiplying an

one-hot vector with a trained projection matrix. A hidden layer follows that applied

a non-linear function to the concatenation of word embedding to n− 1 previous

words. After the hidden layer, the output layer calculates a probability distribution

of the next word.

The most significant disadvantage of Bengio’s approach is that a feedforward

network has to use a fixed length of history that needs to be specified before training.

Thus, similar to n-grams, they are based on Markov assumption. In practise, it

means that neural network can see only five to ten previous words to predict the

next one.

2.3.2 Recurrent Neural Networks Based Language Model

Recurrent Neural Networks (RNN) based language model has been proposed to

overcome a potential limitations of feedforward neural network Language Model

such as the limited representation of history. The history in feedforward neural net-

works is just n− 1 previous words, whereas the hidden layer of RNN represents

unbounded previous history which is learned during the training. As a results, the

most significant benefit of recurrent neural network over feedforward network is

the ability to learn longer context patterns. Advanced patterns, that rely on words at

variable position in the history, can be model more effectively with RNN, because

they can remember some specific words in the hidden state, while feedforward net-

work uses different parameters for each position of the word in the history. The

hidden state is considered as a memory which capture information which has been

presented so far. However, it is also claimed that, in practise, learning a long term

dependencies can be difficult [6].

More precisely, recurrent neural network is a type of neural network where

connections between neurons make a directed cycle. The idea behind RNNs is that

the state of the hidden units depends on previous state of the network. The same

operation is performed for every element of the sequence. The typical architecture
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of RNN is presented on Figure 2.2. It shows that the hidden state receives input

Figure 2.2: A three time-steps Recurrent Neural Network

value from previous hidden state and from current input. In contrast, feedforward

neural network receives input only from the current input word, as shown in Figure

2.1.

At each time step, the hidden state st is calculated from two inputs: previous

hidden state st−1 and input at current time-step xt , which is a embedding of current

word. Then non-linear transformation is applied to obtain the output:

st = f (Uxt +Wst−1) (2.5)

where U and W are trained projection matrices, f is a non-linear function such as

tanh or ReLU. The output of the hidden layer at time t is calculated from current

state st as:

ot = softmax(V st) (2.6)

where V is a trained projection matrix. It represents the probability distribution of

the next word over all words in vocabulary. The softmax function, that ensures that
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the outputs form a valid probability distribution, is defined as:

g(zm) =
ezm

∑k ezk
(2.7)

RNN can be extended by stacking multiple recurrent hidden layers on top of

each other [49, 27, 22]. This model, called stacked RNN or multi-layer RNN, gives

a higher learning capacity and encourage each hidden layer to operate at a different

timescale.

2.3.3 LSTM Networks

Recurrent Neural Networks with long short-term memory (LSTM) unit was orig-

inally proposed by Hochreiter [26]. They has a track record of success in many

NLP tasks such as machine translation [59], language modeling [73], constituency

parsing [64], sentence compression [47]. LSTM is a type of activation unit (see Fig.

2.3), which replace the standard hidden unit in RNN network. Instead of having a

Figure 2.3: Long Short-term Memory Cell [22]

single neural network layer, LSTM unit consists a memory cell that can store in-

formation for a long period of time, as well the three types of boolean gates which
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control the flow of information into and out of the memory cell: forget gate (Eq.

2.8), input gate (Eq. 2.9) and output gate (Eq. 2.10). Given an current input vector

xt , the previous output vector ht−1 and cell state ct−1, an LSTM computes the next

output ht and cell state ct as:

ft = σ(Wf [ht−1,xt ]+b f ) (2.8)

it = σ(Wi[ht−1,xt ]+bi) (2.9)

ot = σ(Wo[ht−1,xt ]+bo) (2.10)

ct = ft� ct−1 + it� tanh(Wc[ht−1,xt ]+bc) (2.11)

ht = ot� tanh(Ct) (2.12)

where Wf , Wi, Wo, Wc are trained projection matrices and b f , bi, bo, bc are trained

biases that parametrize the gates and transformation of the input and � denotes the

element-wise multiplication of two vectors.

All gates are a learned sigmoidal units. They have exactly the same equations

with different parameter matrices. Its inputs are the previous hidden state ht−1 and

current input xt . Forget gate (2.8) allows to decide what information is going to

be erase from the cell state. It defines how much of the previous state is thrown

away. For example, in the language modeling problem, the cell state may include

the gender of the person to use a correct pronouns. After seeing a new subject, this

gate allows to forget the gender of the old subject. This gate was not introduce in

the original LSTM [26], but was proposed by Gers et al. [18]. Input gate (2.9) is

responsible for deciding how much of the newly computed stated for the current

input is updated. Output gate determines which parts of the memory cell should be

output as input to the next layer and for the next time step.

Compared to the standard RNN, the LSTM separates the memory from the

hidden state. As a result LSTMs have been shown to outperform vanilla RRNs on

many tasks, including language modeling [57]. Furthermore, LSTM networks were

designed to learn long-term dependencies more easily than the simple recurrent
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architecture. Moreover, they deal with the gradient vanishing problem, because

memory cells in the LSTM are additive with respect to time. Although LSTM

does not deal with the gradient exploding problem, simple optimization strategies

as gradient clipping [45] works well in practise.

2.3.4 Learning Algorithm

Neural Language models are trained using the cross-entropy criterion, which is

equivalent to maximum likelihood, by minimizing the objective function

J =
N

∑
i=1

logP(wi|wi−1, . . . ,wi−n+1) (2.13)

where N is the number of previous words in the sequence.

Finding the minimum of the objective function is the optimization problem.

The most common approach to solve it is a stochastic gradient descent algorithm.

More recently, most advanced algorithm, the Adam (Adaptive Moment Estimation)

[33] optimizer is used in training. It is an extension of stochatistic gradient descent,

which computes adaptive learning rates for each parameter and uses a momentum.

Backpropagation algorithm [25] is used to train a feedforward neural network.

However, a more common approach to train RNN is Back-propagation Through

Time (BPTT) [66]. Recurrent Neural Network share the same parameters U,V,W

across over all steps. In BPTT, the gradient is calculated by first treating all pa-

rameters as independent, and then running the standard backpropagation algorithm.

Finally, all the corresponding gradients are averaged. Thus, they are tied together.

In practise, instead of backpropagate the error back to the beginning, the algorithm

is run over a fixed window, which results in an approximation of the true gradient.

BPTT has the problem of the vanishing/exploding gradient, that is is a diffi-

culty in training in neural networks that propagate gradient for a long number of

steps. The exploding gradient problem, introduced by Bengio [6], refers to large

increase in the norm of gradient during training. If gradient increase too fast dur-

ing training and it will cause a memory overflow problem. The vanishing gradient

problem refers to the opposite behaviour. If the value of gradient go exponentially
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quickly to norm 0, it will make the model impossible to learn long distance depen-

dencies.

To deal with the problem of exploding gradient, the gradient clipping method

was proposed by Pascanu et al. [45]. The gradient is set back to a small number

after it exceeds a threshold value using the following update rule:

g =
theshold
||g||

g (2.14)

There are two main approaches to deal with vanishing gradient problem.

Firstly, we can use previously described LSTM units. Secondly, instead of using

classical sigmoid activation function in RNN, Rectified Linear Units (ReLUs) can

be used.

Neural networks tends to overfit and they requires good regularization. In addi-

tion to classic regularization methods L1 and L2, Dropout [53] is recently the most

powerful for neural networks. It works by dropping out hidden units in a neural

network along with its incoming and outgoing connections. The hidden units are

removed randomly with some defined probability. Zaremba et al. showed in [73]

how to correctly apply dropout to Reccurent Neural Networks. According to them

dropout should be applied only to inputs and outputs of the network.

2.4 Understanding LSTM
The question which appears with LSTM is to what extent the LSTMs is able to

memorize sequences and capture certain linguistic phenomena. Although LSTMs

can produce the list of all previous hidden states, the next state is always computed

from the current state, making all previous states redundant. It makes this computa-

tions in a Markovian manner, but LSTMs can in theory model unbounded sequence

without any Markov assumption. It is common belief that LSTM networks are able

to learn a long term dependencies using the gating mechanism. However, it is not

clear that it applies to real-world data with the common use stochastic gradient de-

scent and BPTT learning algorithm. Evidence of learning long term dependencies

mainly comes from evaluating LSTMs in downstream task such as learning the re-
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cursive structure of the corpus [7].

Despite the huge popularity of LSTM in language modeling, the understanding

and justification why it works is a challenge. This raises concerns of the limits of

our ability to design better architectures. There have been several attempts to under-

stand the component of LSTM. Greff [24] and Chung [14] analyzed the effect on

performance of removing various gates and connections. The results suggest that

forget and output gates are the most important part of LSTMs. Zaremba and Joze-

fowicz [71] evaluate ten thousands of different RNN architectures and find that the

initialization of forget gate bias has crucial effect on LSTM’s performance. How-

ever, this analysis is limited to examining the effects on global level of the perplexity

on the final test set.

While these results are very important to choose the appropriate LSTM archi-

tecture, they do not find what information is captured by hidden states of LSTM.

RNN architecture make it difficult to analyze what information is retained at their

hidden states at each time step. Karpathy [32] provides the first empirical explo-

ration of the interpretation of cell states of LSTMs during the the predictions of

next word. Their experiments has revealed the existence of interpretable cells that

keep track of long-range dependencies, such as quotes and brackets.

In practise it has proven challenging to LSTM network to learn long linguistic

patterns, because of memory compression problem. The whole input sequence is

compressed into a single dense vector. Thus, storing past information requires a

large memory capacity. As a result, long sequences are generalized poorly by the

network, while the memory is wasted for a short sequences.

2.5 Attention based Models

Recent work attempts to address latter limitations using attention mechanism, which

is one of the most interesting architectural innovation in neural networks. Many of

them show that attention techniques improve the performance of many deep learn-

ing models [43, 74]. It has already demonstrated a success, particularly in computer

vision tasks: digit classification [43], handwriting synthesis [21], image captioning
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[69]. But only recently attention mechanism was introduces into recurrent neural

networks architectures that are typically used in NLP and have been successfully

applied to NLP tasks. Weston et al. [67] proposed a neural networks based model

called Memory Networks. It uses an external memory which are read and written on

the fly with respect to the attention. Since then, many solutions have been proposed

to solve NLP tasks such as speech recognition [13], recognising textual entailment

[47], machine translation [3], question answering [42, 56] and language modeling

[61].

Attention mechanism allows model to access previous information without

having to store it in RNN hidden state. More precisely, attention mechanism is

giving the access to its internal memory, which are the previous hidden states. It

allows network to refer back to the previous inputs, instead of forcing to encode all

information into one fixed-length vector. Model can learn which previous outputs

are useful to predict the next word. There are two ways to get attention from the

sequence (following [65]): by word by word attention (called impatient) or by the

whole sequence (called attentive). We can also distinguish between hard and soft

attention. Hard attention mechanism gives a discrete selections of memory loca-

tions, which has disadvantage that it makes the whole model not differentiable with

respect to its inputs. As a results, reinforcement learning is used to solve learning

problem. On the other hand, more commonly used, soft attention means that the

network compute the attention output as a weighted combination of all memory

locations, instead of value from a single discrete location. Making attention mecha-

nism soft has the advantage that the network can be trained using a backpropagation

algorithm.

In summary, the attention mechanism is designed to solve the memory com-

pression problem in recurrent neural networks by giving the access to its previous

hidden states. Attention Model is able to learn to assign weights to different parts

of the input sequence instead of treating all input items equally. This is not only a

way to improve the performance, but it is also a powerful tool of visualization.
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Model Design

In this chapter we present different neural models for language modeling task. First

of all, we describe the vanilla LSTM model. Then we proposed four new archi-

tectures of Recurrent Neural Network. The first one, Recurrent Neural Network

N-gram model, is a simple combination of RNN with N-gram approach. The next

three models: Attention, Key-Value, Key-Value-Predict models are based on RNN

with attention mechanism. Following that, we take a look at number of related

works and describe similarities and differences between them and our architectures.

3.1 Vanilla LSTM Model
Our model takes a discrete set of inputs w1, . . .wN. Then model converts the entire

set of {wi} into embedding vectors {xi} of dimension d which are computed by

embedding each wi in continuous space using an embedding matrix A of size d×

V , where V is a size of vocabulary and d is the embedding size. Since the word

embedding are learned during the training, the model can represent the knowledge

about particular words. The embedding matrix A is initialized randomly and the

model is learned to differentiate the meaning of words.

The set of word embeddings x1, . . .xN is then processed via LSTM units to

output vectors hi, which are used to compute the probability distribution of the next

word over all words in vocabulary. To compute this efficiently, the resulting vector

is defined as:

Whi +b (3.1)
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where W ∈RV ×k is a trained projection matrix, and b ∈RV is a trained bias vector.

The probability distribution over all words in vocabulary is computed by feeding

the resulting vector into the softmax function.

The model tries to maximize the probability of predicting the correct word at

every time-step by maximizing the averaged log probability of the whole corpus:

J =
1
N

N

∑
i=1

log p(wi) (3.2)

3.2 RNNN Model
Inspired by recent works [36, 37, 9, 68, 29, 52] that has shown that RNNs are great

in combination with N-grams, as they combine the strengths of neural network in

generalizing with the memorization and scalability of an N-gram model, we intro-

duce Recurrent Neural Network N-gram model with LSTM unit (called RNNN).

The RNNN model architecture is illustrated on Figure 3.1. The idea is to use differ-

Figure 3.1: Architecture of Recurrent Neural Network 5-gram model.
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ent parts of past output vectors to predict words on different positions in the feature.

Each output vector hj is divided into N parts [h1
j , . . . ,h

N
j ]. Let C ∈ Rk be a ma-

trix consisting of different parts of N +1 previous vectors [h1
j ,h

2
j−1, . . . ,h

N+1
j−N ]. The

final representation of the new output vector is obtain from non-linear combination

of different parts of N +1 previous output vectors using

h∗ = tanh(WCC) h∗ ∈ R
k

N+1 (3.3)

where WC ∈ R
k

N+1 ×k is trained projection matrix. Note that the first part of the

output vector is used to predict the next word, the second part is used to predict

the word after the next one, the Nth part is used to predict the word on the position

N +1 in the future.

3.3 Attention Model
The Attention LSTM model architecture is presented on the Figure 3.2. It intro-

duces a new attention layer to the vanilla LSTM model, which takes N previous

output vectors of hidden states and produces new representation of the output vec-

tor which are then used to predict the next word.

Let Y ∈ Rk×L be a matrix consisting of output vectors [h1 . . .hL] that LSTM

produces when reading the last L words, where k is the size of the hidden state of the

LSTMs. Furthermore, let H ∈ Rk×L be a matrix consisting final output vector that

is multiplied L times [hN, . . . ,hN]. The attention weights α ∈RL are computed from

non-linear transformation of the LSTM outputs and the vector r ∈ Rk is a weighted

representation of previous output vectors. This can be modeled as:

M = tanh(WYY +W hH) M ∈ Rk×L (3.4)

α = softmax(wT M) α ∈ RL (3.5)

r = Y α
T r ∈ Rk (3.6)

where Wy, Wh ∈ Rk×k are trained projection matrices and w ∈ Rk is a trained

vector. Note that each row of matrix M corresponds to intermediate attention rep-
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Figure 3.2: Architecture of Attentive LSTM model.

resentation mi of the ith word in the sequence and it is obtained from non-linear

combination of transformed final output vector hN and the sequence’s output vector

hi (ith column in matrix Y).

The final representation of attention output is computed as a non-linear com-

bination of the attention weighted representation r of previous outputs and the final

output vector hN as:

h∗ = tanh(W pr+W xhN) h∗ ∈ Rk (3.7)

where Wp, Wx are trained projection matrices.

3.4 Key-Value Attention Model
Key-Value Attention network gives the model greater flexibility for predicting the

next word and helps reduce the gap between computing the attention weight and cal-

culating the convex combination of output vectors. To encourage such behaviour we
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apply key-value decomposition of the output vector similar to Miller et al. [42]. The

difference is that they converted question embedding into key-value paired mem-

ory, whereas we define output vectors of the LSTM network as key-value pairs. In

our case, key part of the output vectors is used to compute distribution of attention

weights α , while the value part is used to calculate weighted representation of previ-

ous output vectors and to define the final attention output vector h∗. The Key-Value

model architecture is presented on the Figure 3.3.

Figure 3.3: Architecture of Key-Value model.

In other words, key memory is designed to decide which previous output vec-

tors are important, while the value memory is designed to compute the final output

vector. This can me modeled as:

M = tanh(WYY +W hH) M ∈ R
k
2 ×L (3.8)

α = softmax(wT M) α ∈ RL (3.9)

r = Y α
T r ∈ R

k
2 (3.10)

Note that the output vector hi contains pair of vector (ki,vi). The difference between
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Key-Value Attention Model and previous described Attention Model is that matrix

Y ∈ R k
2 ×L consist of key part of output vectors [k1 . . .kL] that LSTM produces

when reading the last L words. Matrix H ∈ R k
2 ×L consists of key part of the final

output vector that is multiplied L times [kN, . . . ,kN].

The final representation of attention output is computed as a non-linear combi-

nation of the attention weighted representation r of previous outputs and the value

part of the final output vector vN as:

h∗ = tanh(W pr+W xvN) h∗ ∈ R
k
2 (3.11)

3.5 Key-Value-Predict Attention LSTM
The Key-Value-Predict Attention model is an extension of the Key-Value Atten-

tion Model. To give more flexibility to our model, we divided output vector of the

recurrent neural network into three parts: key, value and predict (ki,vi,pi) (see ar-

chitecture on Fig. 3.4). Key and value memory have the same application as in the

Figure 3.4: Architecture of Key-Value-Predict model.

Key-Value model. The predict part is only used to compute the final representa-
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tion of attention output from the final output vector. Key-Value-Predict model uses

the same structure and weights to compute attention distribution α and weighted

representation r of previous output vectors as Key-Value Attention Model:

M = tanh(WYY +W hH) M ∈ R
k
3 ×L (3.12)

α = softmax(wT M) α ∈ RL (3.13)

r = Y α
T r ∈ R

k
3 (3.14)

The final output vector hi contains three vectors (ki,vi,pi). Matrix Y∈ R
k
3 ×L again

consist of key part of output vectors [k1 . . .kL] that LSTM produces when reading

the last L words. As in the Key-Value Attention model, matrix H ∈ R
k
3 ×L consists

of key part of the final output vector that is multiplied L times [kN, . . . ,kN]. The

difference is that the final representation of attention output is computed as a non-

linear combination of the attention weighted representation r of previous outputs

and the predict part of the final output vector pN as:

h∗ = tanh(W pr+W x pN) h∗ ∈ R
k
3 (3.15)

3.6 Related Methods

A number of recent works have been done to improve the performance of language

models by using RNNs or LSTMs-based models [14, 21, 35, 38, 2]. The memory

in these models is incorporated in the hidden state of the network, which leads

to memory compression problem and does not allow to learn complex patterns.

Furthermore, the LSTM itself has a local memory cell. More recently, Cheng et

al. [11] proposed a Long Short-Term Memory architecture, which differs from

previous works that it has a memory tape instead of fixed memory cell. Compared

to standard LSTM, they additionally introduce an attention layer to compute the

adaptive memory and hidden representation. However, for language modeling task,

they carry experiment only on small PTB data set, which does not have many long

term dependencies. Our model differs from these models in that it does not enhance
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the internal memory of an LSTM.

Recent works attempts to address the limitation of capturing a long distance

dependencies using external memories. The first attempts of using the memory in

neural networks have been done by Steinbuch [55] and Taylor [60] by perform-

ing nearest-neighbor operations on input vectors and then fitting parametric models

to the retrieved sets. More recently, Weston et al. [67] introduce Memory Net-

works that explicitly segregate memory storage from the computation of the neural

network. Sukhbaatar et al. [56] trained their model end-to-end with a memory

addressing mechanism related to soft attention. Recently proposed Neural Turing

Machine [23] also combine neural networks with external memory resources, which

can interact with by attentional process. Their model has shown promising results

in simple sequence tasks such as copying and sorting. A common theme across this

works is that they use external memories that interact with neural network, whereas

our model directly uses an attention mechanism over past outputs states of the net-

work.

Closely related to our Attention model is a Recurrent Memory Network (RMN)

recently proposed by Tran et al. [61]. It combines the strengths of both LSTM

and Memory Network [56]. In RMN, the Memory Block (MB) accesses the most

recent input words and selectively attend to relevant words for predicting the next

word given the current LSTM cell. The Memory Block consists of two lookup table

M and C of size |V | × d, where |V | is the size of vocabulary and d is dimension

of word embedding. Matrix M was used to compute attention distribution, while

matrix C was used to compute a context vector representation of input vectors.

On the one hand, there are some similarities between our model and Recurrent

Memory Network. First of all, we also use the attention mechanism which allows

to attend previous words. However, our model attend over past output vectors, while

RMN attend over past input word embeddings. RMN also uses the idea from Key-

Value Memory Network [42] by using different lookup tables to compute attention

distribution and to compute context vector representation. On the other hand, our

model differs from RMN in many aspects. Firstly, RMN uses a global memory
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with two lookup tables which are used in attention mechanism. In contrast, we use

local memory which is represents by Attention Layer. It allows our model to better

learn a context of word. For example, there are many words with different meaning

in different context such as bark which represent the same vector in the global

embeddings memory, but different vector in Attention Layer memory. Secondly,

RMN model has much more trainable parameters than our model by introducing

two big learned lookup tables of size |V |×d each. For example, if the vocabulary

size is 77K and embedding and hidden size are both 200, RMN model introduce

at least 31 mln parameters, whereas parameters introduced by our model does not

depend on vocabulary size. In our case, model only consist of trainable projection

matrices of size about 160K.

Our Attention Model is also related to Rocktaschel et al. [47]. In that work,

the attention mechanism were used for recognizing textual entailment. A similar

attention model was also used by Bahdanau et al. [3] for machine translation. Xu

et al. [69] also proposed similar attention model that learns to describe the content

of the image. Our Attention model uses an analogous attention mechanism but for

language modeling task. However, we proposed a new architecture of Key-Value-

Predict attention model, which gives more flexibility than basic attention model.

Damavandi et al. [15] presented a hybrid language model integrating n-grams

and neural networks for speech recognition task. Thus, it combines generalization

ability of neural networks and memorization capacity of n-gram model. This model

has shown a 7% relative reduction in word error rate on their Italian dataset. The

difference between their models and our is that they explicitly used n-grams counts

as inputs to neural network, whereas we incorporate the history context of the net-

work.
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Experiments

In this chapter we evaluate the performance of proposed models against variety of

state-of-the-art approaches. We use two public datasets: English Penn Treebank and

Lambada [44]. Furthermore, we created our on dataset from Wikipedia articles. All

experiments were run using TensorFlow library [1].

4.1 Datasets
Our experiments are performed on three different dataset. First, for historical rea-

sons, we carried out the experiments on English Penn Treebank dataset (PTB). It

is a relatively small corpus, but it is used in almost all language models comparison.

The dataset contains about 1 million tokens and vocabulary size of 10K. The aver-

age length of the sentence is 21. We follow the common approach [39] and trained

on sections 0-20 (1M words), used a sections 21-22 (80K words) for validation and

23-24 (90K words) for testing.

Second, recently proposed LAMBADA dataset [44] was used. The LAM-

BADA data set incorporate broad context of natural language text. It consists of

passages composed of a context and target sentence. The context size, which is on

average 4.6 sentences, is the minimum number of complete sentences before the

target sentence such that they cumulatively contain at least 50 tokens. The LAM-

BADA dataset is created from Book Corpus [75]. The training corpus contains 2662

novels and 203 million words, while validation set contains about 361 000 words.

The test set will be released at the time of the competition organised by them.



42 Chapter 4. Experiments

Third, we created our own data set from Wikipedia articles. We randomly

drawn 7513 articles from Wikipedia corpus which are in one of the following cat-

egory: People, Cities, Countries, Universities, Novels. The reason behind this cat-

egories is that this articles often refer to previous information and it incorporate a

long context of the words. The training, validation and test sets consist of 22.5 mln,

1.2 mln and 1.2 mln words respectively. Dataset was preprocessed by removing

all numbers to N symbol (similar to PTB dataset). We also added a special token

before and after each article, which allows to do not attend over words from previ-

ous articles while processing the current one. We restricted the vocabulary of the

Wikipedia dataset to 77K most frequent words in the training set by replacing less

common words by UNK symbol. It converges 97% words in both development and

test sets. Table 4.1 summarizes the data used in our experiments:

Table 4.1: Datasets statistics - number of words in every set. |V | denotes the size of the
vocabulary.

Dataset Number of words
Train Validation Test |V |

PTB 888K 70K 78K 10K
LAMBADA 203M 361K - 77K
Wikipedia 22.5M 1.2M 1.2M 77K

4.2 Training Procedure
We use ADAM [33] for optimization with a first momentum coefficient of 0.9, a

second momentum coefficient of 0.9992 (configuration recommended by Kingma

and Ba [33]) and with learning rate of 0.001. The gradients was clipped during

the training such their norm is bounded by 5 [45]. In all experiments the LSTM

network were unrolled for 20 steps, and mini-batch size was set to 64 for PTB and

Wikipedia dataset and to 96 for LAMBADA corpus. The bias of the LSTM’s forget

gate was initialized to 1 [31], while other parameters are initialized uniformly in

range (−0.1,0.1).

Back-propagation Through time was used to train the network. For Wikipedia

dataset, the hidden states of LSTMs are reset to zeros at the beginning of new article.



4.3. Results 43

We also ensure that our models does not attend over words from previous article. We

take the best configuration based on performance on the validation set and evaluate

it on test set.

4.3 Results
In the following section we present our experiments in language modeling. First,

we report the perplexity results for each of our models against state-of-the-art and

baseline models. Second, we discuss their performance on predicting different cate-

gories of words such an nouns or verbs. Third, we analyse the attention distribution

of our attentive models, and then we visualize and discuss the attention patterns of

the presented attentive models.

4.3.1 Performance

In this set of experiments we compared proposed Recurrent Neural Network N-

gram, Attention, Key-Value and Key-Value-Predict models against a variety of

state-of-the-art models. First of all, we present perplexity results for the stan-

dard LSTM models with different number of layers. Furthermore, we implemented

Recurrent-Memory model [61] with temporal matrix and gating composition func-

tion (RM+tM-g). Finally, we used a Tensorflow implementation of LSTMN archi-

tecture [11].

First, we compare the performance of our models to a range of state-of-the-art

models on Wikipedia dataset. Table 4.2 summarizes the results. Embedding and

hidden sizes are denoted by w and k respectively. The attention window, which is

number of past output vectors used by attentive models, is denoted by a. The total

number of model parameters, including word representations, is denoted by θW+M

(without word representations θM). The embedding and hidden size of models were

chosen to have at most the same number of parameters as vanilla LSTM model.

To ensure a comparable number of parameters to vanilla LSTM model, we have

adjusted both size of the word vectors and hidden size of the network. The atten-

tion window and parameter N for RNNN model were chosen so that they have the

smallest perplexity on validation set.
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Table 4.2: Perplexity results on development and test sets from Wikipedia corpus. Embed-
ding size of the input word is denoted by w, the hidden size of the network by k,
and the attention window by a. The total number of model parameters, including
word representations, is denoted by θW+M (without word representations θM).

Model w k a θW+M θM Dev Test
LSTM 300 300 - 47.0M 23.9M 83.2 85.2

LSTM layers 2 300 300 - 47.7M 24.6M 88.3 90.8
LSTM layers 3 300 300 - 48.4M 25.3M 89.5 91.8

RM(+tM-g) 300 300 20 93.7M 24.4M 76.7 78.4
LSTMN 296 296 5 47.6M 24.2M 93.2 96.4
RNN-3 266 1064 - 47.0M 26.5M 74.0 74.9

Attention 298 298 5 47.0M 23.9M 79.8 81.2
Key-Value 289 578 15 46.9M 23.8M 76.4 78.2

Key-Value-Predict 278 834 5 46.9M 23.8M 73.6 75.5

Results on the Wikipedia corpus of proposed attentive models with different

attention window are summarized in Table 4.3. The parameters of models are the

Table 4.3: Perplexity results of attentive models on Wikipedia test set for different attention
window.

Attention window 1 3 5 8 10 15 20
Attention 81.1 81.7 81.2 82.1 83.1 82.8 84.0
Key-Value 78.3 79.6 79.3 79.2 78.5 78.2 79.9

Key-Value-Predict 75.7 76.1 75.5 75.5 76.0 76.0 77.5
RM(+tM-g) 83.5 82.1 80.5 80.6 80.3 80.1 78.4

LSTMN 97.6 96.8 96.4 97.5 99.9 101.7 103.1

same as presented in Table 4.2. Finally, Table 4.4 summarizes the results of RNNN

model with different parameter N. To ensure a comparable number of parameters

Table 4.4: Perplexity results of RNNN models on development and test sets from Wikipedia
corpus for different parameter N. Embedding size of the input word is denoted
by w, the hidden size of the network by k. The total number of model parameters,
including word representations, is denoted by θW+M (without word representa-
tions θM).

Model N w k θW+M θM Dev Test
RNN-1 1 290 580 47.0M 24.7M 76.1 78.0
RNN-2 2 279 837 47.0M 25.5M 74.4 76.3
RNN-3 3 266 1064 47.0M 26.5M 74.0 74.9
RNN-4 4 253 1265 47.0M 27.5M 74.7 76.8

to vanilla LSTM model, the embedding and hidden size of models were chosen to
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have at most the same number of parameters as vanilla LSTM model.

RNNN We found that even by small modification of Recurrent Neural Net-

work such as incorporating Recurrent Neural Network 1-gram model, gives an im-

provement of 8.5 percentage points in perplexity over vanilla LSTM model. We

argue that this is due giving the model ability to use one part of the memory to

predict word after the next one. Specifically, the model use one part of the output

vector to predict the current word, and the second part to predict the word after

the current prediction. Moreover, tuning the parameter N to 3, which allows to use

combination of 3 past output vectors, gives an improvement of 12.1% over baseline

LSTM model.

Attention By incorporating more complicated attention mechanism we

found a 4.7 percentage point over vanilla LSTM but it does not outperform RNNN

model. The attention model gives access to its previous output vectors and learns

which previous outputs are useful to predict the next word. The motivation for that

model is to enable it to learn a long term context dependencies. However, attending

bigger number of output vectors does not improve the performance of the model. It

leads to the conclusion that attention model does not learn a long term dependen-

cies in the data. In fact, the model with attention window 1 have reached the lowest

perplexity. Hence, attention model with windows size 1 does not learn attention

distribution, because it uses only current and previous output vectors. We suspect

that this is due to not enough size of the corpus and model is not able to learn a long

term dependencies.

Key-Value Enabling the model to decompose the output vector into key-

value paired memory improves the perplexity by 8.2 percentage points over base-

line LSTM model and by 0.3 percentage point over state-of-the-art RM(+tM-g)

model. Key-Value model is an extension of Attention model. It allows to use dif-

ferent memory parts to compute the attention distribution weights and to calculate

weighted representation of previous output vectors. Similar to Attention Model, the

performance of Key Value model does not improve significantly with increasing

attention window.
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Key-Value-Predict By incorporating Key-Value-Predict decomposition of

output vectors we found a 11.4 percentage point improvement over a baseline

LSTM model , and a 3.7 percentage point increase over RM(+tM-g) model which

is considered as current state-of-the art model. Introducing the third part to the

output vectors gives model more flexibility by using different memory to compute

weighted representation of previous output vectors and to compute the final rep-

resentation from final output vector. Therefore, when predicting the next word,

the model use different parts of memory to three tasks : computing attention dis-

tribution, compute weighted representation of attended vectors and predicting the

next word from final output vector. However, the performance of Key-Value-Predict

model does not improve by significant margin with increasing the attention window.

It is similar behaviour to our previous attentive models.

In summary, Recurrent Neural Network 3-gram model gives the biggest im-

provement over vanilla LSTM model. In addition, it also outperforms the state-

of-the-art RM(+tM-g) model by 4.5 percentage points. Note that that RM(+tM-

g) model uses almost two times more parameters that our models. It is due to

it introduces two big trained lookup tables to learn representations of word em-

beddings. However, our attentive models does not improve the performance over

RNNN model. It is surprising that attentive model does not significantly improve

their performance with increasing the attention window. It seems that they do not

learn a long term dependencies. However, we will show in the qualitative analysis

(see 4.4) that they are able to capture long-term dependencies.

Then, we carry out experiments on LAMBADA dataset, which is about 10

times bigger than our own Wikipedia dataset, and incorporate broad context of nat-

ural language text. Test set is not released yet, so we use part of the training set as a

validation set and actual development corpus as our test set. We also compare per-

plexities on control set which contains randomly sampled 5K passages of the same

shape and size as the ones used to build test set, but without filtering them in any

way. Results on the LAMBADA corpus are summarized in Table 4.5. Due to large

size of the corpus and limited computational resources we report the performance
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Table 4.5: Perplexity results on development, test and control sets from LAMBADA cor-
pus. Embedding size of the input word is denoted by w, the hidden size of the
network by k, and the attention window by a. The total number of model pa-
rameters, including word representations, is denoted by θW+M (without word
representations θM).

Model w k a θW+M θM Dev Test Control
LSTM 300 300 - 47.0M 23.9M 63.1 75.0 81.8

LSTM layers 2 300 300 - 47.7M 24.6M 67.2 76.9 84.8
LSTM layers 3 300 300 - 48.4M 25.3M 66.4 75.5 83.8

RM(+tM-g) 300 300 20 93.7M 24.4M 58.9 71.5 77.5
LSTMN 296 296 5 47.0M 24.2M 69.2 80.7 88.2
RNN-4 253 1265 - 47.0M 27.5M 54.3 70.9 76.7

Attention 298 298 5 47.0M 23.9M 60.5 74.9 80.9
Key-Value 289 578 15 46.9M 23.8M 59.4 74.2 79.5

Key-Value-Predict 278 834 5 46.9M 23.8M 56.2 71.5 77.7

of different attention windows only for our best attentive model - Key-Value-Predict

(see Table 4.6).

Table 4.6: Perplexity results of Key-Value-Predict model on LAMBADA test set for differ-
ent attention window.

Attention window 1 3 5 10 15 20
Dev 57.5 57.3 56.2 61.2 61.3 60.1
Test 71.6 72.9 71.5 73.4 72.8 72.1

Control 77.8 78.3 77.7 81.5 80.9 77.9

The attention window for other models were chosen the same as in previous

experiments on Wikipedia dataset. Finally, Table 4.7 summarizes the results of

Recurrent Neural Network N-gram model with different parameter N.

Table 4.7: Perplexity results of RNNN models on development, test and control sets from
LAMBADA corpus for different parameter N. Embedding size of the input word
is denoted by w, the hidden size of the network by k. The total number of model
parameters, including word representations, is denoted by θW+M (without word
representations θM).

Model N w k θW+M θM Dev Test Control
RNN-1 1 290 580 47.0M 24.7M 57.3 73.6 78.7
RNN-2 2 279 837 47.0M 25.2M 58.2 72.8 78.7
RNN-3 3 266 1064 47.0M 26.5M 56.0 71.0 77.3
RNN-4 4 253 1265 47.0M 27.5M 54.3 70.9 76.7

RNNN Allowing the model to use different parts of past output vectors to
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predict words on different position in the feature improves the performance of pre-

dicting the next word. With increasing the number of used past output vectors, the

perplexity decreases. The best performance is achieved for Recurrent Neural Net-

work 4-gram model. It decreases the perplexity by 5.5 and 6.2 percentage points on

test and control set respectively over vanilla LSTM model. Moreover, it improves

the performance over current state-of-the-art RM(+tM-g) model by 0.8 percentage

point on test set and by 1 percentage point on control set.

Attention By incorporating the attention mechanism we found a 0.1 per-

centage point improvement on test set and 1.1 percentage point on control set over

vanilla LSTM model. The attention model has worse performance than our other

proposed models. We suspect that this is due to less flexibility of the model in

language modeling. Hence, using the same memory for computing the attention

distribution and for calculating the context representation of past output vectors

might lead to noise in the training process.

Key-Value Enabling the model to use a Key-Value decomposition of the

output vectors improves the performance by 1.0 and 2.8 percentage points on test

and control set respectively over vanilla LSTM model. We argue that this is due

to the model being able to use different memory parts to compute the attention

distribution weights and to calculate weighted representation of previous output

vectors.

Key-Value-Predict We found that incorporating Key-Value-Predict decom-

position of output vectors decreases the perplexity by 4.7 percentage points on test

set and by 5.0 on control set over LSTM model. However, it does not outperform

the state-of-the-art RM(+tM-g) model. We suspect that this is due to the fact that

RM(+tM-g) decreases the perplexity with increasing the attention window, whereas

our Key-Value-Predict model does not improve the performance by significant mar-

gin with increasing the attention windows.

In summary, Recurrent Neural Network 4-gram models gives the biggest im-

provement and outperforms current state-of-the-art approaches on both test and con-

trol sets. Similar to results on Wikipedia dataset, increasing the attention window
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does not improve the performance of attentive language models.

Finally, for the historical reasons, we compare our models on English Penn

Treebank dataset. This dataset is tiny - about 25 times smaller Wikipedia data set,

and 225 times smaller than LAMBADA dataset. However, still many state-of-the-

art papers compare their results only on this dataset. Table 4.8 summarizes the

results of our models against state-of-the-art approaches on PTB dataset.

Table 4.8: Perplexity results on training, development and test sets from PTB corpus. Em-
bedding size of the input word is denoted by w, the hidden size of the network
by k, and the attention window by a. The total number of model parameters,
including word representations, is denoted by θW+M (without word representa-
tions θM).

Model w k a θW+M θM Train Dev Test
LSTM 300 300 - 6.7M 3.7M 55.7 122.8 116.3

LSTM layers 2 300 300 - 7.5M 4.5M 75.0 141.9 131.8
LSTM layers 3 300 300 - 8.2M 5.2M 99.0 160.0 148.7

RM(+tM-g) 300 300 20 13.3M 4.3M 57.5 121.1 115.6
LSTMN 277 277 5 6.7M 3.9M 89.0 151.4 145.9
RNN-1 252 504 - 6.7M 4.2M 59.3 122.0 117.3

Attention 287 287 4 6.7M 3.8M 60.9 119.7 114.3
Key-Value 249 498 3 6.7M 4.2M 60.4 121.0 116.4

Key-Value-Predict 215 645 3 6.7M 4.5M 65.3 122.9 118.6

Results on the PTB corpus of proposed attentive models with different atten-

tion window are summarized in Table 4.9. The parameters of models are the same

Table 4.9: Perplexity results of attentive models on PTB test set for different attention win-
dow.

Attention Window 1 2 3 4 5 10 15 20
Attention 114.8 114.4 114.4 114.3 115.2 116.0 115.7 115.9
Key-Value 116.8 116.7 116.4 117.8 117.0 117.5 118.3 118.5

Key-Value-Predict 118.8 118.7 118.6 117.8 119.5 121.0 120.4 121.3
RM (+Tm-g) 117.8 118.1 117.2 117.3 117.2 116.4 115.7 115.6

LSTMN 154.6 147.8 145.1 145.9 145.1 146.2 145.8 147.5

as presented in Table 4.8. Finally, results of Recurrent Neural Network N-gram

model with different parameter N are summarized in Table 4.10

RNNN In contrast to performance on previous datasets, enabling the model

to use different parts of output vector to predict words on different position in the
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Table 4.10: Perplexity results of RNNN models on training, development and test sets from
PTB corpus for different parameter N. Embedding size of the input word is
denoted by w, the hidden size of the network by k. The total number of model
parameters, including word representations, is denoted by θW+M (without word
representations θM).

Model N w k θW+M θM Train Dev Test
RNN-1 1 252 504 6.7M 4.2M 59.3 122.0 117.3
RNN-2 2 216 648 6.7M 4.5M 63.6 124.3 120.5
RNN-3 3 188 752 6.7M 4.8M 67.6 126.6 121.8
RNN-4 4 165 825 6.7M 5.1M 86.8 133.0 128.8
RNN-5 5 147 882 6.7M 5.2M 76.5 133.7 129.3

future does not improve the performance of RNNN model over LSTM model. In

addition, increasing the parameter N decreases the performance of the model. We

suspect that this is due to small amount of data. The second reason might be that

to ensure the same number of parameters, we dramatically decrease size of word

embeddings and size of final output vector representation. For example, for RNN-

5 we decrease both sizes of word embeddings and final output vector from 300 to

147. As a result, these models have to represent words and output vectors by smaller

number of parameters.

Attention Enabling the model to attend over previous output vectors improve

the perplexity by 1.7 percentage point over LSTM model and outperform RM(+tM-

g) by 1.1 percentage point. Again, increasing the size of attention window does

not improve the performance by significant margin. The lowest perplexity gives the

model which attends over 4 previous output vectors.

Key-Value Allowing the model to use different memory for computing atten-

tion distribution and for calculating the context representation of past output vectors

does not improve the performance over baseline LSTM model. We suspect that the

reason behind it is the same as for low performance of RNNN model - to ensure the

same number of parameters we again decrease the size of embedding vectors and

hidden output size from 300 to 249. It leads to not efficient representation of the

word and output vector which seems to be crucial for PTB dataset.

Key-Value-Predict In contrast to results on previous datasets, incorporating

the decomposition of the memory to key, value, predict parts, decreases the per-
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formance of the network. We suspect that this is again due to tuning the size of

embedding and output vectors representation from 300 to 215. Thus model is not

able to represent words efficiently.

To prove our hypothesis about weak performance of our models on PTB

dataset, we run the same models without changing the size of word embeddings

and final output vectors. The results are presented in Tables 4.11 Presented models

Table 4.11: Perplexity results of over parameterized models on training, development and
test sets from PTB corpus. Embedding size of the input word is denoted by
w, the hidden size of the network by k, and the attention window by a. The
total number of model parameters, including word representations, is denoted
by θW+M (without word representations θM).

Model w k a θW+M θM Train Dev Test
RNN-1 300 600 - 8.4M 5.4M 57.2 117.4 112.4
RNN-2 300 900 - 10.6M 7.6M 61.4 118.1 115.1
RNN-3 300 1200 - 13.6M 10.6M 60.7 120.6 115.8

Attention 300 300 4 7.1M 4.1M 59.7 119.1 114.0
Key-Value 300 600 3 8.5M 5.5M 63.0 119.7 114.5

Key-Value-Predict 300 900 4 10.7M 7.7M 65.1 118.0 114.0

outperform baseline LSTM model, but they are incomparable, because of different

number of total parameters. Note the our models produces output vector of different

size than hidden size of the LSTM network. For example, Key-Value-Predict model

use only only one third of the output vectors to produce final representation.

4.3.2 Performance Analysis

As a next step towards comparison of different types of models, we look at the per-

formance of predicting different types of words such as: nouns, verbs, adjectives,

adverbs, personal pronouns, determiners. Results on Wikipedia corpus are summa-

rized in Table 4.12. Note that the parameters of the model are the same as reported

in Table 4.2.

We found that the most difficult is to predict are adjectives. Hence, they are

very challenging for language models. Their meaning can vary depending on the

context in which they appear. The performance of predicting adjectives is the best

for Key-Value-Predict model, which outperforms baseline LSTM model by 16.5

percentage points. On the other hand, the easiest to predict are determiners. It is
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Table 4.12: Perplexity results on predicting different category of words on Wikipedia test
set.

Model Nouns Verbs Adjectives Adverbs
Personal
Pronouns Determiners

LSTM 650.9 299.7 1141.7 510.3 24.4 9.6
LSTM layers 2 804.3 306.4 1234.8 511.0 25.7 9.4
LSTM layers 3 843.2 301.3 1227.9 511.3 22.9 9.4

RM(+tM-g) 578.0 267.4 1039.2 456.8 24.4 9.4
LSTMN 807.1 342.0 1345.4 570.5 26.8 10.0
RNN-3 558.9 250.3 967.6 458.6 20.3 8.9

Attention 619.4 274.5 1074.2 501.7 24.5 8.8
Key-Value 589.2 264.9 1070.3 493.6 22.3 9.2

Key-Value-Predict 555.9 264.7 953.7 468.2 22.4 8.8

expected behaviour, because the amount of different determiners is small and their

are always followed by noun. Finally, Recurrent Neural Network 3-gram model

outperforms other models on predicting verbs by 16.5 percentage points over LSTM

model, and on predicting personal pronouns by 16.8 percentage points.

4.4 Qualitative Analysis
As previous results have shown, increasing the size of attention windows does not

significantly improve the performance of our attentive models. However, we found

that it is instructive to analyse which output representations the model is attending

over when predicting the next word. Note that interpretation of attention distribution

have to be taken with care because attentive models are not forced to rely only on

representation obtained from attention (see Eq. 3.7, 3.11, 3.15). In this section, we

analyse attention distribution, as well as visualize and discuss the attention patterns

of the presented attentive models. We use Wikipedia dataset and models with the

same parameters as in Table 4.2, with the exception of the size of attention window

which is set to 15.

4.4.1 Positional analysis

As a first step in analysing attention distribution, we look at the average attention

weights of past output vectors positions (see Fig 4.1). Note that the RM(+tM-g) [61]

model attends over input word embeddings starting from the current one, whereas
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Figure 4.1: Average attention weights distribution on Wikipedia test set for RM(+tM-g),
Attention, Key-Value and Key-Value-Predict models. The values denotes the
percentage points of average attention weights. Rightmost positions represent
most recent history.

our attentive models attend over output vectors starting from the previous one. The

attention mass of all models tends to concentrate at the right most position (cur-

rent input for RM(+tM-g), previous output vector for others) and decreases when

moving further away in the history. However, about 40 % attention weights of

RM(+tM-g) model concentrates on the current word, whereas only approximately

18 % attention weights of our best model, Key-Value-Predict, concentrates on the

closest output vector. The worse performance of RM(+tM-g) can be explained by

concentrating on current word, which is already used to produce current hidden

state of the LSTM, so it does not deal with the memory compression problem. On

the other hand, our attentive models more often attend over long distance output

vectors. It means that proposed models learned to attend over further output vectors

in the history which leads to capture long-term dependencies.

For Key-Value-Predict model we randomly sampled 70 sets of words from

Wikipedia test set, and visualize attention distribution over last 15 output vectors

(see Fig. 4.2). In many cases, attention weights concentrates on last few words,

however many long distance words also receive noticeable attention weights. For

many predicted words, attention weights are distributed evenly over past output vec-

tors, which leads to the conclusion that in such cases LSTM hidden state contained

enough information to predict the next word.
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Figure 4.2: Visualization of attention weights for randomly chosen sequences from
Wikipedia test set for Key-Value-Predict model. Rightmost positions represent
most recent history.

4.4.2 Linguistic phenomena analysis

We manually inspect examples that shows certain linguistic phenomena. Figures

4.3-4.5 show to what extent the attentive models focuses on contextual represen-

tations of the sequences. Note that the models attend over output vector which

are produced after processing visualized words. We also present the perplexity of

predicting the next word and top five word predictions with with the respective log-

probabilities for different models. We found that our attentive models are able to

capture some long term dependencies. Example (1) from Fig. 4.3 shows that our At-

tention, Key-Value and RNN-3 models are able to capture information about gender

of the subject. The attentive models focus on words Anne Marie while predicting

the correct word her which refers to attended words. However, LSTM model and

Key-Value-Predict have worse performance in this case. Furthermore, example (2)
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shows the ability of focusing on broad context of the sequence. Recurrent Neural

Network N-gram and Attentive models are able assign bigger probability to the cor-

rect word than LSTM model. They capture the information that correct prediction

mother refers to previously mentioned word father.

Figure 4.4 illustrates examples that capture distant dependencies. Both exam-

ples (3) and (4) show that our attentive models refer back to distant word in the

history while predicting the correct one. Our proposed models outperform vanilla

LSTM model on predicting the next word on the sequence (3) by significant margin.

The attentive models are able to predict the correct word mosque which was pre-

viously mentioned. Example (4) shows that our attentive models correctly assign

a big probability to the close bracket and focus on distant open bracket, whereas

vanilla LSTM and RNN-3 models do not capture this information.

Finally, Figure 4.5 shows results that capture morphological dependencies.

Both examples (5) and (6) show that attentive models are able to attend over distant

plural noun which refers to the predicted word were. On the other hand, LSTM

model does not capture that it refers to plural noun and as a results assign bigger

probability to the word was.
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(1)

Attention Model
... pastor at UNK and the family moved there . Anne Marie UNK was from UNK ;

Key-Value Model
... pastor at UNK and the family moved there . Anne Marie UNK was from UNK ;

Key-Value-Predict Model
... pastor at UNK and the family moved there . Anne Marie UNK was from UNK ;

Correct next word: her
Perplexity:
LSTM: 42.2 Attention: 5.9 Key-Value: 8.2 Key-Value-Predict: 33.0 RNN-3: 12.5

Top 5 predictions:
LSTM he (-3.16) his (-3.24) in (-3.66) the (-3.71) and (-3.87)
Attention her (-2.57) she (-2.70) the (-3.83) and (-3.90) in (-5.61)
Key-Value she (-2.34) her (-3.03) and (-3.35) the (-4.02) Maria (-4.39)
Key-Value-Predict the (-2.91) in (-3.86) UNK (-4.02) and (-4.13) they (-4.62)
RNN-3 she (-1.80) the (-3.56) her (-3.64) he (-3.69) and (-4.32)

(2)

Attention Model
... David ) and John Mustaine . His father was of French and Finnish descent and his

Key-Value Model
... David ) and John Mustaine . His father was of French and Finnish descent and his

Key-Value-Predict Model
... David ) and John Mustaine . His father was of French and Finnish descent and his

Correct next word: mother
Perplexity:
LSTM: 3.0 Attention: 1.8 Key-Value: 1.2 Key-Value-Predict: 1.6 RNN-3: 1.9

Top 5 predictions:
LSTM father (-1.25) mother (-1.59) family (-4.27) younger (-5.05) wife (-5.43)
Attention mother (-0.84) father (-3.13) grandfather (-4.02) son (-4.62) brother (-5.41)
Key-Value mother (-0.24) father (-3.88) grandfather (-6.02) wife (-6.77) paternal (-7.70)
Key-Value-Predict mother (-0.69) father (-3.13) maternal (-4.28) grandfather (-4.51) parents (-5.67)
RNN-3 mother (-0.95) father (-2.63) paternal (-3.77) parents (-4.53) maternal (-4.71)

Legend: 0 10 20 30 40 50 60 70 80 90 100

Figure 4.3: Results on manually selected examples that capture information about gender
of the subject. It shows to what extent the attentive models focuses on con-
textual representations of the sequence. The perplexities and top five word
predictions with with the respective log-probabilities for different models are
presented. Legend shows the percentage points of attending weights.
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(3)

Attention Model
... mosque in Texas is located in Denton , about north of Downtown Dallas . The oldest

Key-Value Model
... mosque in Texas is located in Denton , about north of Downtown Dallas . The oldest

Key-Value-Predict Model
... mosque in Texas is located in Denton , about north of Downtown Dallas . The oldest

Correct next word: mosque
Perplexity:
LSTM: 49.2 Attention: 6.1 Key-Value: 4.5 Key-Value-Predict: 2.7 RNN-3: 5.1

Top 5 predictions:
LSTM extant (-3.91) and (-4.11) city (-5.09) surviving (-5.13) building (-5.14)
Attention mosque (-2.62) is (-3.38) building (-4.12) in (-5.18) was (-5.24)
Key-Value mosque (-2.17) building (-3.45) church (-4.10) synagogue (-5.04) golf (-5.61)
Key-Value-Predict mosque (-1.44) , (-4.26) synagogue (-4.56) building (-4.78) church (-4.81)
RNN-3 building(-2.31) mosque (-2.36) church (-3.62) community (-5.01) synagogue (-5.08)

(4)

Attention Model
... Glory ) [ first medal on wearer ’s right depicted in photo of Morse with medals

Key-Value Model
... Glory ) [ first medal on wearer ’s right depicted in photo of Morse with medals

Key-Value-Predict Model
... Glory ) [ first medal on wearer ’s right depicted in photo of Morse with medals

Correct next word: ]
Perplexity:
LSTM: 1119.8 Attention: 3.3 Key-Value: 8.8 Key-Value-Predict: 4.3 RNN-3: 330.0

Top 5 predictions:
LSTM . (-2.64) , (-2.72) and (-2.73) in (-3.31) of (-4.34)
Attention ] (-1.73) ) (-2.17) on (-3.47) in (-4.25) and (-4.81)
Key-Value in (-2.46) ] (-3.13) and (-3.16) , (-3.77) ) (-3.93)
Key-Value-Predict ) (-2.06) ] (-2.10) , (-3.39) and (-3.64) on (-4.70)
RNN-3 and (–3.41) in (-3.56) . (-3.62) , (-3.63) of (-3.67)

Legend: 0 10 20 30 40 50 60 70 80 90 100

Figure 4.4: Results on manually selected examples that capture distant dependencies. It
shows to what extent the attentive models focuses on contextual representations
of the sequence. The perplexities and top five word predictions with with the
respective log-probabilities for different models are presented. Legend shows
the percentage points of attending weights.



58 Chapter 4. Experiments

(5)

Attention Model
His works , the greater part of which originally appeared in “ Crelle ’s Journal ” ,

Key-Value Model
His works , the greater part of which originally appeared in “ Crelle ’s Journal ” ,

Key-Value-Predict Model
His works , the greater part of which originally appeared in “ Crelle ’s Journal ” ,

Correct next word: were
Perplexity:
LSTM: 17.8 Attention: 6.8 Key-Value: 3.8 Key-Value-Predict: 1.9 RNN-3: 8.1

Top 5 predictions:
LSTM “ (-3.37) was (-3.57) published (-4.12) were (-4.15) and (-4.83)
Attention were (-2.77) are (-3.37) was (-3.40) and (-3.65) have (-4.21)
Key-Value were (-1.91) was (-3.24) are (-3.89) included (-5.08) is (-5.24)
Key-Value-Predict were (-0.92) are (-3.31) was (-4.91) have (-5.30) had (-6.47)
RNN-3 were (-2.04) was (-3.51) had (-3.77) became (-5.07) are (-5.30)

(6)

Attention Model
and American flags . The first words transmitted by Samuel Morse that day in Puerto Rico

Key-Value Model
and American flags . The first words transmitted by Samuel Morse that day in Puerto Rico

Key-Value-Predict Model
and American flags . The first words transmitted by Samuel Morse that day in Puerto Rico

Correct next word: were
Perplexity:
LSTM: 9.9 Attention: 7.3 Key-Value: 14.4 Key-Value-Predict: 3.0 RNN-3: 7.2

Top 5 predictions:
LSTM , (-2.94) was (-3.08) were (-3.31) in (-3.62) had (-4.42)
Attention were (-2.87) was (-2.92) , (-3.03) are (-3.10) is (-3.86)
Key-Value , (-3.18) ’s (-3.44) were (-3.85) and (-4.71) found (-5.14)
Key-Value-Predict were (-1.56) are (-2.39) , (-3.89) is (-5.00) was (-5.02)
RNN-4 were (-2.85) ’s (-2.89) are (-3.01) is (-3.87) , (-4.13)

Legend: 0 10 20 30 40 50 60 70 80 90 100

Figure 4.5: Results on manually selected examples that capture morphological dependen-
cies. It shows to what extent the attentive models focuses on contextual repre-
sentations of the sequence. The perplexities and top five word predictions with
with the respective log-probabilities for different models are presented. Legend
shows the percentage points of attending weights.
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Conclusions

In this thesis we have proposed four novel recurrent neural network architectures for

language modeling, namely Recurrent Neural Network N-gram, Attention, Key-

Value and Key-Value-Predict models. All models were trained on LAMBADA,

PTB and our own Wikipedia dataset.

Overall, the results of the thesis have been very satisfying. First, we have

shown that incorporating the history context to recurrent neural network improves

the performance of language model. All our models compute the new represen-

tation of the final output vector using the previous output vectors of LSTM. We

designed a Recurrent Neural Network N-gram model and three more complicated

attentive models: Attention, Key-Value and Key-Value-Predict. Interestingly, we

have presented that our simple modification of recurrent neural network, RNNN

model, achieve the same performance as our the best attentive model - Key-Value-

Predict and they both outperforms other models by significant margin.

Moreover we have proved that our Key-Value-Predict structure gives more

flexibility in predicting the next word and it improves the performance over Key-

Value paired memory. Key-Value-Predict model use different parts of memory

while predicting the next word: the attention distribution is computed based on

key memory, the context weighted representation of attended vectors is calculated

from value memory, and the the next word is predicted from predict part of current

output vector. We suspect that this is due to giving model more flexibility and model

is able to learn three different calculations simultaneously.
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In addition, we have visualized that our attentive models are able to capture

certain linguistic phenomena. It allows us to discover which words are important

for word prediction. For example, we can capture some syntactic dependencies such

as open and close brackets. Another examples have shown that attentive models are

able to focus on distant noun, for instance works, while predicting the word were

which refers to attended noun.

As the extension of present work, it would be worthwhile exploring how using

the mixture of our Recurrent Neural Network N-gram and Key-Value-Predict model

will improve the performance of language model. Both models achieve competitive

results, but they use different techniques. In addition, we can apply some heuristics

to force our attentive models to focus on more distant words. For example, we can

allow attentive models to attend only capitalized words, which we believe might be

more important for predicting the new one. Another example can be to do not allow

attentive models to attend over N previous words. Finally, it would be interesting

to explore how our models could help to improve the performance of related tasks

such as machine translation or text summarization.
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