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Abstract

This thesis investigates whether hierarchical structure in linguistic tasks can be used
to improve the performance of Natural Language Processing algorithms. In particu-
lar, we investigate one such hierarchy (Part of Speech Tagging, Chunk Tagging and
Language Modeling) in the context of a Neural Network algorithm, and find that
adaptations to exploit the hierarchy improve performance.

Furthermore, we show that we can make use of the mixture of unsupervised
(Language Modeling) and supervised tasks (Part of Speech Tagging and Chunk
Tagging) within the hierarchy to conduct semi-supervised learning and, in doing so,

improve the performance of the supervised tasks.
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Chapter 1

Introduction & Key Results

Natural Language Processing seeks to teach machines to understand language. If
successful, NLP has a wide variety of use cases from language-based interaction
with computers, to assisting drug discovery through reading biomedical data. How-
ever, many of the algorithms that perform Natural Language Processing tasks do not
yet have the required level of accuracy to be applied widely. This thesis aims to in-
troduce a method for improving performance, and demonstrate it with two example
tasks.

Concretely, we investigate whether hierarchical structure in linguistic tasks can
be used to improve the performance of Natural Language Processing algorithms. In
particular, we investigate one such hierarchy (Part of Speech tagging, Chunk tag-
ging and Language Modeling) in the context of a Neural Network algorithm. Fur-
thermore, we show that we can make use of the mixture of unsupervised (Language
Modeling!) and supervised tasks (Part of Speech tagging and Chunk tagging) within

the hierarchy to conduct semi-supervised learning. Specifically, we investigate:

1. Whether we can explicitly embed linguistically motivated hierarchical task
structure in neural architectures for Part of Speech (‘POS’) tagging, Chunk
tagging (also known as Noun-Phrase Chunking or Shallow Parsing) and Lan-
guage Modeling, and what performance this explicit hierarchical structure

brings.

'Language Modeling is not strictly speaking unsupervised - the goal is predict the next word in a
sequence. However, it does not require hand annotation and so we are terming the task unsupervised
in this context.
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2. Whether, by incorporating an unsupervised auxiliary task (Language Mod-
elling) to two supervised target tasks (POS tagging and Chunking), we can

improve performance by conducting semi-supervised learning.

We find that both designing a neural network around a task hierarchy, and
including an auxiliary task improve the performance of our Chunk and POS taggers.
Although we do not achieve State of the Art results, our performance is comparable
to the best performing classifiers.

In this introduction we’ll start by providing a deeper motivation for the project.
Then we’ll provide brief overview of POS tagging, Chunk tagging and Language
Modeling and make the argument for using them as a task-set in multi-task learning.
We’ll then move on to discuss recent work on these problems in the NLP commu-
nity, and finally outline our contribution in the context of both multi-task learning
and semi-supervised learning.

Chapter 2 forms a literature review covering multi-task learning, semi-
supervised learning and neural networks within NLP. We also go into more detail
on POS tagging, Chunk tagging and Language Modeling. Chapter 3 documents our
novel adaptations to existing algorithms.

Chapter 4 covers the data sets used in our experiments and in previous POS tag-
ging, Chunk tagging and Language Modeling work; Chapter 5 covers experimental

results and Chapter 6 is our conclusion and suggestions for further work.

1.1 Project Motivation

1.1.1 Linguistic Task Hierarchies

When we speak and understand language we are arguably doing many different
linguistic tasks at once. At the top level we might be trying to formulate the best
possible sequence of words given all of the contextual and prior information (like
what has just been discussed and what the aims of the conversation are), but this
requires us to do lower-level tasks like understand the syntactic and semantic roles
of the words we choose in a specific context.

Computational linguists have tried to break down natural language understand-
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ing into these separate tasks, and design algorithms to do each of these separately.
These tasks are numerous; they cover spotting named entities (names of people,
for example), uncovering the full semantic structure of a sentence or predicting the
sentiment of a document. An on-going area of research is how you might compose
algorithms that accomplish each of these tasks separately, so that we have a single
algorithm that might conduct multiple tasks at once just like a human (Collobert
et al. (2011)), where each of the tasks provides additional information to the others
to improve performance.

One such approach is to recognise that there is an implicit (and in some cases,
explicit) linguistic task hierarchy. When teaching a computer to understand a sen-
tence we might start with a task that figures out the syntactic properties of individual
words (‘Part of Speech tagging’). After that we might group these words into parts
that have the same syntactic function (‘Chunking’). Alongside these syntactic tasks
we would also have to have a process that understands the meaning of the words of
the sentence when put together (‘Semantic Parsing’). Finally, these will feed into
an overall task that assesses the overall meaning and correctness of the sentence and
assigns it a score (‘Language Modeling’) .

This project seeks to provide an example of one such linguistic task hierarchy,
and demonstrate that, by developing an algorithm that both exploits this structure
and optimises all three jointly, we can improve performance. This research can then

form a basis for similar approaches with other natural language processing tasks.

1.1.2 Semi-Supervised Learning and Linguistic Task Hierar-

chies

Most of the time each task in a task hierarchy will have a different number of data
available in its training set 2. If your goal is to try to write an algorithm that assigns
a good score to well-formed sentences and a bad score to poorly-formed sentences
in English, your data set is potentially billions of words long (you could just look
at all the past issues of The Times!). Tasks such as these, where you can use raw

input without any additional labelling, are called ‘unsupervised’ tasks. However, if

’In machine learning, the training set is the data the algorithm learns from.
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you wanted to write an algorithm that picks out names of individuals based upon
historical data you’d have to ask someone to hand-label a data set first. Tasks like
these are called ‘supervised’ tasks.

Getting someone to hand-label data is expensive in time and cash. These con-
siderations mean that for supervised tasks there are often only a very limited number
of data, but for unsupervised tasks the number of data is huge. An interesting ques-
tion is whether we can use some of the information we learn from conducting an
unsupervised task to help the performance of our supervised task. This broad family
of algorithms is called ‘Semi-Supervised Learning’.

You can easily have a mixture of supervised and unsupervised tasks within
a given linguistic task hierarchy. For this reason, it is a natural question for this
project to see whether we can use a form of semi-supervised learning within our

multi-task algorithm to improve performance.

1.2 Example Task Hierarchy - POS tagging, Chunk

tagging and Language Modeling

In our project we will examine a simple syntactic task hierarchy in detail in order
to demonstrate the effectiveness of our proposed contributions. After the tasks have
been introduced in this section, we will go on to discuss in more detail the different
tasks and metrics for measuring performance starting in Section 2.5.

First, at the top of the hierarchy, we have language modeling — an unsupervised
task that seeks to assign a probability to a sequence of words conditioned on prior
information . In some ways, this task is the most similar to what a lay person might
call Natural Language Understanding — most reading and speaking can be reformed
as finding the most probable set of words given the correct prior information. In
our model, we seek to predict the next word conditioned on the previous words in a
sequence (Figure 1.1). 3

In order to conduct language modeling effectively, knowledge of the syntactic

3Note: In our experiments, Language Modeling is used solely as an unsupervised auxilary task
for the primary tasks of POS tagging and Chunking, and therefore we do not present results of the
Language Model to be evaluated against existing benchmarks.
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Input Label

At this point we'd like

this point we'd like to

point we'd like to point

we'd like to point out

Sliding window of previous words is the input sequence Goal is predict
next word in
sequence

Figure 1.1: Language Modeling Example. Here, we have a sliding window of words where
the goal is predict the next word in the sequence. Ideally, we’d like to find the
joint most likely sequence of words conditioned on all relevant prior informa-
tion, but doing so is computationally intractable.

NP VP NP VP PP NP PP NP

He reckons the current acaount deficit will na rrow to enly 18 billion in September

Figure 1.2: Chunk tagging Example. In the diagram, the words encompassed by each curly
bracket are part of the same chunk. We have three types of Chunk in this
sentence: ‘NP’ — Noun Phrase, ‘“VP’ — Verb Phrase and ‘PP’ — Proposition.

structure of the sentence is very useful. For this reason our second task is putting
words together into groups that have the same syntactic role - known as as a Chunk
(Figure 1.2). This gives a ‘shallow’ parse tree of the sentence that can be used as
a feature for language modeling. Since the Chunks of a sentence are not known
before-hand, we need a hand annotated training set and so this task is a supervised

task.

Finally, Chunking itself relies on knowledge about the role each word plays in
the syntactic structure - for example, whether it is a noun, or a verb or an adjective.
Labeling each word with this information is known as ‘Parts of Speech’ tagging ,
and forms the final task in our task hierarchy (Figure 1.3 shows a sentence that has
been labeling with its Parts of Speech, Figure 1.4 shows a Chunking tree with POS
tags). Again, the Part of Speech for each individual word requires hand annotation
and so this is also a supervised task. A diagram of the task hierarchy can be seen in

Figure 1.5.
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POS: NNS IN DT NN NNS VBP RB

WORD: Forecasts for the trade figures range widely

Figure 1.3: Part of Speech tagging Example. Here, instead of groups of words being iden-
tified, each word has it’s own label (its ‘Part of Speech’). For this sentence
we have 6 Parts of Speech: ‘NNS’ — Noun Plural, ‘IN’ — Preposition, ‘DT’
— Determiner, ‘NN’ — Noun Singular, ‘VBP’ — Verb Non-3rd Person Singular
Present and ‘RB’ — Abverb.

S
NP VBD IN NP

I VAN

DT JJ JJ NN barked at DT NN

o |

the little yellow dog the cat

Figure 1.4: Pos and Chunk Relationship Example (Bird and Klein (2009)). In this figure,
the chunks are at the first level in the tree (e.g. ‘NP’), with the POS on the
second level (e.g. ‘DT’).

At this point we’d like to emphasise that this task hierarchy has both supervised
(POS tagging and Chunk tagging) and unsupervised (Language Modeling) tasks.
This means that the size and variety of data available for training each task is very
different - Language Modeling has significantly more data than POS tagging and
Chunk tagging. A significant part of this project is investigating whether we can

leverage the unlabelled data to make better predictions about POS and Chunk tags.

1.3 Summary of Relevant Work in Multi-Task

Learning and Semi-Supervised Learning

Much recent work for multi-task learning in NLP has been based upon algo-
rithms called ‘Neural Networks’. In Section 2.2.2 we’ll discuss these algorithms
in detail, but for now we want to explain two important points. The first is that
neural networks are essentially compositions of parametrised functions F(X) =
fo,(0,fo,(... fo,(04,X))) = Y that minimises the loss — L(F(X),Y) — between
F(X) and Y. The parameters for each of these functions are learnt using an al-

gorithm called backpropagation. The second point that each of these functions is
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Task 3: Language Modeling

=

Clues about the ends of phrases can be used by the
language model

Task 2: Chunk Tagging

=

POS are the foundational building blocks of Noun-
Phrase Chunks

Task 1: Part of Speech Tagging

Figure 1.5: Task Hierarchy Rationale. Note that while at inference time information only
flows up the hierarchy, during training senior tasks in the hierarchy can improve
performance of junior tasks through the shared layer.

called a ‘layer’, and contains two parts - a linear transformation o of the input fol-
lowed by a non-linear function f applied to each dimension. Each layer learns a

more abstract representation of the input than the last. 4

Multi-task learning in Neural Networks is achieved by sharing the parameters
of one or more of these layers between different tasks, so that information can be
shared between them. In the most recent multi-task learning work that trains POS
and Chunk together (Yang et al. (2016)), POS and Chunk share parameters on the
first layer, but have separate parameters on the second layer (a simplified diagram
of the structure can be seen in Figure 1.6a). In this paper, optimising both POS
and Chunk together rather than separately improves performance by 0.8 percentage

points.

Semi-Supervised learning for Neural Networks in NLP is most often achieved

“Interestingly, it has been shown that you can approximate any function using one layer as long
as you have a suitable non-linear function (for more details on what ’suitably non-linear function’
means see Hornik et al. (1989)), and the dimensionality of the linear-transformation is sufficiently
large. This raises the interesting question of why we need multiple layers in the first place, or any
improvements on simple one-layer architectures. Part of the answer is that layer decisions embed
prior beliefs about the task (e.g. that you know that the first layer should represent one feature, like
relationships between nearby pixels in the case of a convolutional neural net) that often make them
easier to train.
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POS Prediction Chunk Prediction

POS Layer Chunk Layer
(POS-Specific (Chunk-Specific
Parameters) Parameters)

Layer One
(Parameters
Shared)

Word Input

(a) Simplified Structure from Yang et al. (2016). This is the most recent architecture used
for multi-task learning in NLP.

POS Layer Chunk Layer LM Layer

t t

Shared Layer

(b) Our Baseline Model. Here, we’ve added Language Modeling as a task to improve the
ability to learn good predictive structure. Notice also that this model is without an
explicit hierarchy in the tasks.

- ok

POS Layer — - LM Layer

t |

|
I
t

(c) Our Model. This model is the same as above, except here we have created connec-
tions within the tasks according to the linguistic task hierarchy. This addition improves
performance.

Figure 1.6: This figure outlines the different architectures motivated by our contribution.
Note that the Baseline Model and Our Model are capable of semi-supervised
learning because they conduct Language Modeling. In our experiments we
conduct semi-supervised learning by alternating batches of unsupervised and
supervised data.
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through initialising some of the parameters of the supervised model with parameters
pre-trained on an unsupervised model. In particular, it is common to represent each
word as a dense vector (also known as ‘word embedding’), and for these vectors to
be trained using a neural network. The reason you’d want to represent words as vec-
tors is because you could then represent semantic relationships between words as
relationships in the vector space - for example, ‘dog’ and ‘Labrador’ would be close
together in the vector space. Once this structure has been learned by an unsuper-
vised algorithm (using lots of data), it can be exploited by a supervised algorithm
(with less data) to achieve better results. In Section 2.3 we’ll cover this topic in
significantly more detail.

For our experiments we construct a baseline model based upon this existing
work in multi-task and semi-supervised learning. In particular, we use a simplified
> version of the architecture developed in Yang et al. (2016), but with the addition
of the language modeling task (Figure 1.6b) and pre-trained word vector represen-

tations.

1.4 Our Contribution

A full discussion of our contribution can be found in Chapter 3.

There are two key things to note about the existing work on Multi-Task learn-
ing and Semi-Supervised learning discussed in the previous section. First, the ar-
chitectures make no use of the implicit linguistic hierarchy with Parts of Speech and
Chunking. The second is that, while semi-supervised learning exists in the form of
word-vectors, there is no semi-supervised learning on the training corpus or related
corpora that may improve results further.

Our contribution to the current approaches for POS and Chunk tagging are
then twofold: first, we explicitly create a hierarchical structure for POS, Chunking
and Language Modelling that ensures information from lower tasks in the hierarchy
can be used by those higher up; second, by incorporating the Language Model we

can train unsupervised representations using the training corpus and related corpora

3Specifically, we use simpler functions for layers one and two.
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‘ Test Fg—_; (CoNLL) ‘ Test Fg—_; (Genia) ‘
Baseline Model 91.95 % 85.47 %
Explicit Task Hierarchy | 92.24 % (+ 0.29 %) | 85.80 % (+ 0.37 %)

Table 1.1: Hierarchy Summary Results - Chunk

| Test Accuracy (CoNLL) | Test Accuracy (Genia) |
Baseline Model 96.2 % 97.3 %
Explicit Task Hierarchy 96.4 % (+ 0.2 %) 97.6 % (+ 0.3 %)

Table 1.2: Hierarchy Summary Results - POS

that improve both the POS and Chunking performance (Figure 1.6c). For a more de-
tailed description of both the hierarchical links and the method of semi-supervised

learning, please see Chapter 3.

1.5 Summary of Experimental Results

For a full discussion of our experimental results, please see Chapter 5.

We test our results on two data sets — the CoNLL 2000 Newspaper text corpus
and the Genia Biomedial text corpus. This is because Chunking for Biomedical text
has been found to be significantly more difficult than Chunking for Newspaper text.

First, we run our baseline model (Figure 1.6b) to establish benchmarking re-

sults. These results can be seen in Table 1.1.

1.5.1 Explicitly Representing Task Hierarchy

As disucssed, the first of our contributions is explicitly embedding the linguistic
task hierarchy in the neural architecture (Figure 1.6c). This addition results in a 0.3
percentage point increase in Chunking F1 Score on the CoNLL test set compared to
a baseline model initialised with pre-trained word embeddings. Full results of these
experiments can be seen in Tables 1.1 and 1.2.

Furthermore, embedding an explicit task hierarchy allows us to learn a vector
representation for each POS and Chunk tag. When projected into low-dimensional
space we can observe semantic regularities, particularly in the chunk tags where
chunks are grouped together according prefix. A full discussion of the Task Hierar-

chy experimental results can be found in Section 5.2.1.
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No Pre-Trained Embeddings

With Pre-Trained Word Embeddings

25

Test Fg_; (CoNLL)

Test Fg_; (Genia)

Test Fg_; (CoNLL)

Test Fﬁzl (Genia)

Baseline Model
Semi-Supervised

86.2 %
88.3 % (+ 2.1 %)

Table 1.3: Semi-Supervised Summary Results - Chunk

853 %
85.7 % (+ 0.4 %)

No Pre-Trained Embeddings

91.9 %
92.3 % (+ 0.4 %)

With Pre-Trained Word Embeddings

85.8 %
85.8 % (+ 0.0 %)

Test Fg_; (CoNLL)

Test Fg_; (Genia)

Test Fg_; (CoNLL)

Test Fg_; (Genia)

Baseline Model
Semi-Supervised

92.4 %
94.2 % (+ 1.8 %)

97.5 %
97.6 % (+ 0.1 %)

96.2 %
96.2 % (+ 0.0 %)

97.3 %
97.6 % (+ 0.3 %)

Table 1.4: Semi-Supervised Summary Results - POS

1.5.2 Semi-Supervised Learning

The second of our contributions is incorporating a (proportionally) large unlabelled
data set into our training schedule to learn unsupervised representations of word to-
kens and avoid over-fitting to the training set. Experimental results with pre-trained
word embeddings show a small improvement of 0.35 percentage points F1 score on
Chunking against a baseline model. In addition, the model trains significantly faster
(without unsupervised data our model converges after c.40 epochs, with unsuper-

vised data it converges in c.10 epochs).

However, the largest improvements can be seen in models that do not utilise
transfer learning in the form of pre-trained word embeddings. Here, there is no
pre-trained unsupervised word representations - all of the work is undertaken by the
auxiliary task. Here, we see a performance improvement of over 2 percentage points
in Chunking F1 score in the CoNLL 2000 Chunking data set. Interestingly, the
biomedical data set benefits least from both word embeddings and semi-supervised
learning. We hypothesise that this is partly due to the little overlap between training

and test vocabulary, and the distinct style and vocabulary for biomedical text.

The semi-supervised learning effect has interesting applications for situations
where there are not pre-trained word embeddings (for example, in languages with
smaller corpora). In this case, good results can be achieved without the need for
corpora of over a billions tokens or months of training time. A set of summary
results for this experiment can be seen in Tables 1.3 and 1.4. A full discussion of

all semi-supervised experiments can be seen in Section 5.2.2.
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Our model doesn’t Since the model still thinks
recognise in-vitro as an we’re within a noun-phrase,
adverb, since it comes after it doesn’t recognised
‘an’ and ‘vitro’ is normally ‘mutagenized derivative’ is a
noun. distinct noun phrase.
Prediction .
Gold Token

Figure 1.7: Example of Incorrect Sentence in Biomedical Text

1.5.3 [Example Incorrect Sentence

Further insight into the challenges of our model can be generated by examining
sentences in which mistakes were made. In Figure 1.7 we provide an example
incorrect sentence from the Genia Biomedical corpus. In this sentence the model
gets confused by unusual usage (Latin-esque) of the word ‘in’ as part of the adverb
‘in vitro’, and so over-extends the noun-phrase Chunk. In particular, it shows the
difficulty of tagging unusual vocabularies and writing styles. More examples can

be found Chapter 5.

1.5.4 Summary Analysis & Further Work

At the beginning of this introduction we introduced two questions we hoped to
answer. We’ll revisit each of those in turn, briefly describing the results of our
investigation and suggestions for further work.

1. Whether we can explicitly embed hierarchical task structure in neural archi-
tectures for Part of Speech (‘POS’) tagging, Chunk tagging (also known as Noun-
Phrase Chunking or Shallow Parsing) and Language Modeling, and what perfor-
mance this explicit hierarchical structure brings.

We found that explicit embedding of hierarchical task structure can improve
performance and offer valuable insight into the vector representation of low-level
tasks learnt by the neural network.

Further work could investigate whether this performance improvement can be
observed in other putative task hierarchies in Natural Language Processing and

other machine learning disciplines. Furthermore, additional work could be con-
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ducted to quantify how much senior tasks are using the learnt representations of
junior tasks.

2. Whether, by incorporating an unsupervised auxiliary task (Language Mod-
eling) into a model with to two supervised target tasks (POS tagging and Chunking),
we can improve performance by conducting semi-supervised learning.

We found that semi-supervised learning as described can improve performance
both on models initialised with pre-trained word embeddings. However, the best
results were found in situations with no prior pre-training, where our auxiliary task
can achieve much of the unsupervised representation learning achieved with far
larger corpora and training resources in a fraction of the time and with far fewer
data.

Further research would investigate two outstanding problems in this area. The
first is the problem of individual layers ’forgetting’ their role when specific tasks
are not optimised for large periods of time. This happens in situations where you
might only have a small number of supervised data for one task, but a large number
of supervised data for another. Solutions to this problem could involve selectively
fixing weights for epochs without a training signal, or by providing a form of regu-
larisation that trades off learning new information and forgetting old information.

The second problem is that of choosing the unsupervised task. Alternative
tasks to language modelling could involve a variation of Generative Adversarial net
or Actor Critic algorithms. Investigating which task improves the fully-supervised

tasks the most would be a key area of follow-on research.



Chapter 2

Literature Review

2.1 Multi-Task Learning & Semi-Supervised Learn-
ing
2.1.1 Overview

For many applications in Machine Learning there are far more unlabelled data than
there are labelled data. Ideally, we’d like to be able to use these unlabelled data
to improve the performance of an algorithm for labelled data. This is the case for
the tasks in our project - POS tagging and Chunking on the CoNLL 2000 task have
250k tokens, whereas unlabelled corpora for training word embeddings can have 6
billion tags Pennington et al.. This approach, where we leverage unlabelled data for
a supervised task, is called Semi-Supervised Learning.

One approach to semi-supervised learning is to try and find a good predictive
structure using unlabelled data. So, for example, we might try and find a good
dense vector representation of a word using unlabelled data, and then leverage these
representations when training a labelled task. This is one motivation behind word
vector representations, covered in Section 2.3.

A related approach would be to jointly minimise two or more tasks that share
some parameters. The intuition behind this is that each task provides a sample of
the ‘base’ functional predictive structure, and that by sampling from many related
tasks, we get a better estimate of what that base structure should be. If this intuition

is correct, we should expect that by sharing parameters we can improve results
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on all tasks. The general approach of training a model to perform two tasks is
called ‘multi-task’ learning (e.g. Evgeniou and Pontil (2004)), with the specific
approach in which a predictive structure is uncovered by sharing parameters often

called ‘structure learning’ or ‘inductive transfer’ Ando and Zhang (2005).

2.1.1.1 Structural Learning Outline
This outline is based on Ando and Zhang (2005).

In supervised learning we want an algorithm that maps an input x € X to an
output y € Y, where we assume the existence of some generating process D. We
want to select a function f from a set of possible functions Hy parametrised by 6,
called a ‘hypothesis space’, that best approximates D, measured by minimising the
expected error. The expected error is often approximated by the empirical error - if

you minimise this error you doing what’s known as Empirical Risk Minimisation:

f=argmin Y L(f(x),y)
f y)=1

where L(f(X),y) is the error. Now assume we have M tasks each with N,
samples drawn from generating processes Dy,, and hypothesis spaces H,, g with
shared parameters 6. Then, if we are conducting Empirical Risk Minimisation we

want to find £ such that:

N
g = argmin’y " L(f(x3),¥,')
foi=1

The aim is to find the optimal tied parameters 6 such that the average empirical
error on each task is minimised. We can see immediately that the more tasks we
add, the better our estimate of the optimal tied parameters will be, since we have
more data. In our project, our hypothesis space will be a neural network with tied
parameters on specific layers.

It is also possible to make an intuitive argument for why related tasks should
benefit from being trained jointly. Something you expect with a supervised learning

algorithm is that similar inputs should have similar outputs - that the predictor is

smooth in the input space. But this concept of similarity is often difficult to define.
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Consider, for example, words - it isn’t clear that the correct way to measure the
similarity of Apple’ and ’Orange’ even in a dense word embedding. By looking
at multiple tasks for Natural Language Processing at the same time the distance
measures between inputs intrinsic in language should be more discoverable than
looking at one individually.

Relevant recent work in Multi-Task learning for Natural Language Process-
ing has focused on training multiple, related tasks at the same time. In particular,
Yang et al. (2016) shares first layer parameters for a two-layer neural network that
optimises POS and Chunk jointly.

Word vector representations are the major semi-supervised contribution to Nat-
ural Language Processing. Here, word vector representations that encode some
degree of semantic knowledge are learned on an unlabelled corpus (of billions of
tokens), and then are used to initialise a supervised network. An in-depth discussion

of word vectors is provided in Section 2.3.

2.2 Artificial Neural Networks (‘Neural Networks’)

2.2.1 Overview

Neural Networks have a long history. They were first introduced in the 1950s with
the Perceptron Rosenblatt (1958) and the Multi-layer Perceptron algorithms, but
were difficult to train (partly because they were not end-to-end differentiable). In
the 1980s, Rumelhart, Hinton and Williams Rumelhart et al. demonstrated that
using an algorithm called Back Propagation ("BP’), based upon the chain rule of
calculus, one could train a fully differentiable neural network efficiently.
Limitations in the hardware of the day meant that deep networks were not
trainable, and so early promising results failed to materialise into breakthroughs.
Recent developments in Graphical Processing Units (GPUs) have meant that neural
networks can be trained effectively, and they have proceeded to achieve state of the
art results in many disciplines. One of the first breakthrough result of this era was
the 2012 ImageNet competition Krizhevsky et al. (2012) in which a deep convolu-

tional neural net beat the previous state of the art by c.12 percentage points. Neural
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Figure 2.2: Basic Neural Net

Network models hold state of the art results in all of the tasks in this project.

2.2.2 Basic Neural Network

As the name suggests, a neural network is a network of neurons. A neuron is simply
a function that takes in some inputs values x, and outputs a continuous value y. A
basic schematic where the function is a linear combination of the inputs can be seen
in Figure 2.1.

You can stack lots of these neurons with the same inputs together to make a
‘layer’, and you can put many layers together to make a ‘deep neural network’ (Fig-
ure 2.2). Depending on which functions you use for the neurons, a neural net can
approximate any arbitrary function (Cybenko (1989)). This means that, theoreti-
cally, neural nets can learn arbitrary complex decision functions for classification
tasks, which makes them very powerful models.

We can train a fully-differentiable neural network using back propagation.
Here, we give a simple demonstration of the back propagation algorithm and its
benefits (diagrams from Olah (2015)). For a more detailed derivation please see

Rumelhart et al..
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Figure 2.3: Example Computation Graph

)
@

— =5

5]
S5

Sl
I
[e=l

Figure 2.4: Forward Differentiation

The essence of back propagation is efficiently calculating the derivative of the
outputs (the classification error) of the neural network with respect to the inputs, and
then using standard methods to minimise the outputs. We will use the computation
in Figure 2.3 to demonstrate how this is achieved.

A naive way to calculate the derivatives is to start with each input, and calculate
the derivative of each output with respect to this input (Figure 2.4). In our compu-
tation, this would require four calculations for b. We then require two calculations
for a - a total of 6 calculations. You can imagine how, if were to add significantly
more inputs, the number of calculations would grow enormously. In situations like
computer vision, where pictures may have millions of pixels, this method becomes
impractical.

We can alternatively start at the outputs, and find the derivatives of the inputs
with respect to the outputs. Utilising the tree structure of the computation graph,
this can be computed in 5 computations - fewer than forward diff. Importantly, if
we added another input we would only increase the number of computations by at
most two, whereas for forward differentiation the additional computations could be
4.

For tasks such as computer vision classification tasks, where the number of
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Figure 2.5: Backwards Differentiation

inputs is far larger than the number of outputs, backwards differentiation can be
significantly faster. However, if the opposite is the case (i.e. fewer inputs than

outputs) then forward differentiation would be significantly faster.

The final step is to use an optimisation algorithm such as Stochastic Gradient
Descent to optimise the output function. A review of two optimisation algorithms,

and our choice for this project, is in Section 2.2.4.

2.2.3 Cross Entropy Loss for Categorical Predictions

Categorical data in neural networks are often represented as one-hot vectors. These
are vectors that are the length n (the number of labels) where every index is zero
apart from i, the index of the label. For example, if you had 10 labels and you
wanted to represent the label ‘3, your vector would be of length 10 with zeros

everywhere but the third index.

A neural network will predict the probability that an input x should be labelled
i for each possible label, giving a probability distribution over the possible labels ¢
(Figure 2.6). We then need to find a suitable loss function that represents how close

our prediction is to the true distribution p, our one-hot vector.

An initial candidate could be the KL Divergence (Barber (2012)) which is a

way to measure the ‘difference’ between two different distributions:

KL(plq) = =Y p(x)logq(x +Zp )ogp(x 2.1)

X

=H(P,Q)—H(P)>0 (2.2)
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Figure 2.6: Predicted Distribution vs. Gold Distribution. Here we have a visualisation of
the distribution predicted by the Neural Network (on the left), and a visualisa-
tion of the one-hot gold vector (on the right). The challenge is finding a suitable
loss function.

Where H(P,Q) is called the cross entropy between P and Q and H(P) is called
the entropy of P. The KL divergence is zero when the two distributions P and Q are
identical, and so a natural objective for the Neural Network would be to minimise
the KL divergence between the prediction and the gold token. However, we notice
that only the cross entropy term H (P, Q) is dependent upon the prediction Q, and
so it is sufficient to minimise the cross entropy only. This is known as the cross

entropy loss.

2.2.4 Optimisation Algorithms

2.2.4.1 Stochastic Gradient Descent

Gradient Descent is a very simple algorithm that minimises a function fg(x). In
gradient descent, you take the derivative of the function at the current value of 6,
Vfo(x) and subtract a proportion of it (called the learning rate) from the current
value - 0 := 6 — oV fy(x), repeated for each time step until convergence. For a
proof of convergence under certain conditions please see Barber (2012). A variety

of methods using second-order derivatives, such as Newton’s method, can be used
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to improve the performance but are typically not suitable for high-dimensionality

spaces. For a fuller discussion again see Barber (2012).

A separate problem with gradient descent occurs when there are too many
data to take the derivative of the model (or evaluate it) on all data points efficiently
simultaneously. This could be, for example, in a large corpus of 1 billion words.
In this case, we can make an approximation to the gradient by taking the gradient
of a small batch of data - this is called Stochastic Gradient Descent and n this case,
the update is 0 = 0 — &V fg (xparen). Again, this algorithm converges to a (possibly

local) minimum depending on learning rate assumptions.

2.2.4.2 Learning Rate Annealing

If you choose a learning rate that is too large then the jumps in the objective function
will also be too big - this means you may overshoot a minimum, or oscillate around a
minimum. However, if your learning rate is too low, your training never really ‘gets

started’ - it will converge so slowly that reaching an optimum will be inpractical.

To combat this, we often start off with a large learning rate and reduce it over
time - known as ‘learning rate annealing’. Particularly for algorithms without adap-

tive learning rates (Section 2.2.4.4), this hack can significantly improve results.

2.2.4.3 Momentum

Stochastic Gradient Descent can occasionally get stuck in saddle points, where we
have a gradient of zero but aren’t at a minimum. It is this problem that Momemen-

tum is designed to address.

The idea behind momentum is to update your current parameters using a mov-
ing average of your current gradient and previous gradients (called a ‘velocity’ vec-
tor), so that when you are in an area of zero gradient you still make a in the direction
of the weighted average of your previous updates. This weighted average is termed

‘momentum’. Specifically, we replace the Stochastic Gradient Descent update with:
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Vil = Uvy — 8Vf(9[) (23)
O 11=06+v (2.4)

An adaptation of momentum, called Nesterov’s Accelerated Gradient (‘NAG’)
changes the update to the velocity vector. This update ‘looks ahead’ by taking the
gradient of your velocity vector plus the current parameters, which significantly

improves convergences. The update then becomes:

Vipl = My — V(6 + uvy) (2.5)
011 =6+vi1 (2.6)

Adding momentum to your optimiser can significantly improve convergence

speed. For a full discussion please see Sutskever et al..

2.2.4.4 Adaptive Gradients

Stochastic Gradient Descent has another key problem - a constant learning for each
parameter rate will emphasise highly varying parameters over less-varying param-
eters. To achieve the best results, the learning rate has to adapt per dimension to
compensate for this bias. Alternatives to Stochastic Gradient Descent that try to ad-
dress this problem like AdaGrad (Duchi et al. (2011)) weight old gradient updates
and new gradient updates equally. This is a problem in non-stationary environments
where we’d like to favour new gradient updates. One approach to solving both of

these problems at the same time, the algorithm called Adam, is described below.

In 2014, an algorithm called Adam was introduced that addresses the key prob-
lems associated with Stochastic Gradient Descent (Kingma and Ba (2014)). First, it
adapts the the update to emphasise less frequently varying parameters, it then adds
a bias to ensure that there is less variance in the update. For a full derivation of the

algorithm please see the original paper Kingma and Ba (2014). The full algorithm
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can be seen in Algorithm 1.
Given these improvements over Stochastic Gradient Descent (even with Mo-
mentum) demonstrated by Adam, we have decided to use Adam as the optimiser

for this project.
Input: o: Step size learning rate

Input: B;5; € [0,1): Exponential decay rates for the moment estimates

Input: f(6): Stochastic objective function with parameters 6

Input: 6y: Initial Parameter Vector

mo < 0 (Initialise 1 moment vector) ;

Vg < 0 (Initialise 2"d moment vector) ;

t <— 0 (Initialise timestep) ;

while 6; not converged do

t<—t+1;

g < Vo fi(6,_1) (Get gradients w.r.t stochastic objective at time step t) ;

my < Br-my_1+ (1= B1) - g (Update biased first moment estimate) ;

Vi < Ba-vi_1+ (1= By) - g7 (Update biased second raw moment
estimate) ;

1y < my (1 — B} )(Compute bias-corrected first moment estimate) ;

Vr <= v; (1 — %) (Compute bias-corrected second raw moment estimate)

0; < 6,1 — o -1 / (\/V; + €) (Update parameters) ;

end
Algorithm 1: Adam

2.2.5 Recurrent Neural Networks (‘RNNs’)

In a story, the words and sentences at the beginning affect the words and sentences
that come at the end - this is an example of sequential data, where the predictions
of the future are dependent on what has come before. Much of the analysis we
would like to do with Neural Networks is sequential; language and video are two
examples.

Neural Networks of the type that we discussed in Section 2.2.2 can’t deal with

this sort of data - they evaluate one input at a time, unconditioned on the previous
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Figure 2.7: Two RNN Views

inputs. Recurrent Neural Networks are an adaptation of the basic Neural Network
that allow us to deal with these data. Formally, for a sequence of inputs xi,...,xy
and labels yq,...,yy, an RNN will predict $,, = gg(xp|xs—1,---,x1) (Where 0 are
the parameters of the RNN) and minimise %Zn Loss(yn, ). The algorithm to min-
imise this loss, called Back Propagation Through Time (‘BPTT’) was introduced in
Werbos (1990).

There are two complementary ways to view a recurrent neural network, both
seen in Figure 2.7. The first is a Neural Network with a loop in it - so information
(‘cell state’) from the previous time step is fed through to the current time step. In
this view it’s really easy to see the simplicity of the RNN architecture. The second
view is the ‘unrolled’ view - where we show the net for each time step. In this view
you can easily see that each time step has it’s own loss, and that the RNN has to
optimise the joint loss over each time step because the parameters are tied. This is
the reason behind the average loss in the above paragraph.

Because RNNs can be very long in the horizontal direction, and also 2-3 layers
deep, RNNs are particularly subject to the ‘vanishing gradient’ problem in which
gradients become very small for many of the parameters in the network (which
prevents training from taking place), or the ’exploding gradients’ problem, where
gradients can become too large and oscillate. For tasks where you want to learn
long-term dependencies (e.g. in text), this is a significant problem (For a full the-
oretical discussion of this problem please see Hochreiter et al. and Bengio et al.

(1994)). One solution to this is to use specialist ‘cells’ that are designed to handle
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Figure 2.8: Bi-directional RNN

long-term dependencies such as the ‘Long Short Term Memory’ cell and the ‘Gated

Recurrent Unit’.

2.2.6 Bi-directional RNNs

Recall that, in a Part of Speech Tagger, for input word n, an RNN will output a
probability distribution over the POS-tag vocabulary conditioned on all previous
words qg(ps|ns—1,...,n1). However, since we have the whole of the sentence it
makes sense to try and use the information on what comes next to predict p;. This
is the motivation behind a Bi-directional RNN, and they have achieved state of the
art in Chunking (Yang et al. (2016)) and POS tagging (Andor et al. (2016)). A

diagram of a Bi-directional RNN can be seen in Figure 2.8.

In a Bi-directional RNN we run left-to-right through the sentence, and then we
run right-to-left. This gives us two hidden states at time step ¢ - one from the left-to-
right pass, and one from the right-to-left pass. These are then combined to provide
a probability distribution for the POS token conditioned on all of the other words in
the sentence gg(p;|nr,,...,M441,...,n—1,n1). The same procedure can be used on
other sequence-tagging tasks, such as Chunking. The strong point of Bi-directional
RNN:s, that it looks forwards as well as backwards, is also its weak point since it

prevents online or continuous prediction (Lipton et al. (2015)).
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2.2.7 Long Short-Term Memory Cells (‘LSTMs’)

LSTMs, introduced in Hochreiter and Schmidhuber (1997) are specially designed
to learn long-term dependencies (and so avoid the vanishing gradient problem). An
LSTM replaces a single neuron in a traditional network with a series of 4 ‘gates’
which control what information is passed from time step to time step in the RNN
and which information is used for prediction. Because prediction is based upon
this ’cell state’ and not the gradient, LSTMs are more stable than traditional RNNss.
Empirical evidence shows that the LSTM can learn things as sophisticated as when
tokens are within or outside parentheses (Karpathy (2015)). The diagrams for this
section (Figure 2.9) are taken from Olah (2015).

The idea behind an LSTM is that you have a four-stage process in a cell: you
first figure out which information is not relevant from the previous time step (‘For-
get’ - Figure 2.9a), you then figure out which information is relevant from the cur-
rent time step (‘Input’ - Figure 2.9b), you then update the cell state (‘Update’ -
Figure 2.9¢) and then make your prediction or input to the next layer - (‘Output’ -

Figure 2.9d).

The Forget Gate applies a sigmoid function to a linear combination of the hid-
den state and input representing which parts of the previous hidden state should be
forgotten. The Forget Gate was not originally part of the LSTM, and was intro-
duced in Gers et al. (2000). The equation for this gate can be seen in Figure 2.9a

and below:

fr=0Wy-[h_1,%]+by) (2.7)

The Input Gate has two parts. The first part is a sigmoid function that decides
(as continuous value between 0 and 1) which parts of the cell state need additions.
The second part is a tanh layer that decides which information to add to the cell

state. The equations for these gates can be seen in Figures 2.9b and below:
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Figure 2.9: LSTM

Iy = O'(Wf [he—1,%¢) + by) (2.8)

C, = tanh(We - [h—_1,%,] + bc) (2.9)

The Update Gate combines the results of the Input Gate and the Forget Gate
to update the Cell State with simple multiplication and addition. Importantly, the
Cell State is fully passed on to the next time step, hindering the vanishing gradients

problem. The equation for these gates can be seen in Figure 2.9c and below:
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C=fixC_1+i,%C (2.10)

Finally, we decide what to output. This is simply done with a combination of a
sigmoid function on the input multiplied by a tanh function on the Cell state (Figure

2.9d).

01 = 6(Wylhi_1,x,]+by) 2.11)

hy = oy xtanh(Cy) (2.12)

Note that by stacking the weights of all the separate functions, the LSTM can
be computed in one vector product. As such, it can be considered the activation

function for one layer.

2.2.8 Gated Recurrent Units (GRUSs)

A Gated Recurrent Unit (introduced in 2014 by Cho et al. (2014)) is a cell inspired
by the LSTM, but is simpler to compute and implement. They have been shown
(Chung et al. (2014)) to have comparable performance to the LSTM on sequence
modelling tasks. Indeed, an adaptation of the GRU achieves state of the art perfor-
mance for Chunking (Yang et al. (2016)).

The essence of the GRU is to merge the hidden (output) state with the cell
state, and make the forget and input functions more compact. A diagram of a GRU

can be seen in Figure 2.10.

The GRU combines the ‘forget” and ‘input’ gates in the LSTM by a singe
‘reset’ (a sigmoid activation function) gate on a linear combination of the output
of the previous time step 4,1, and the current input x;. When the reset gate is set
to zero, the cell will ‘forget’ all previous information. This gate allows the gate to

decide which information is useful and which isn’t.
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2z =0 (W - [hi—1, 24))
re =0 (W - [hi—1,24])

he = tanh (W - [ry % hy_1, )

ht:(l—zt)*ht_l—i—zt*izt

Figure 2.10: GRU Diagram

rr=0W,-[h_1,%]) (2.13)

Using the reset gate we generate a new candidate hidden state 5, from the
‘remembered’ information from the previous state /;_ using a tanh (or alternative

non-linear) activation function:

hy = tanh(W - [ry x hy_1, %)) (2.14)

Finally, we create an update gate that provides a weight between the previous
hidden state /,_; and the candidate new hidden state /,. We then combine these in

a weighted sum to get the new hidden state:

7y =tanh(W, - [h—1,x;]) (2.15)

By = (1 —z) s hy_1 4z %Ry (2.16)

2.3 Vector Representations of Words

2.3.1 Overview

We use words like ‘Apple’” and ‘Orange’ in similar contexts because they both refer

to similar things - they have a semantic relationship. A perfect NLP system would
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understand the semantic relationship between words, ideally with these semantic re-
lationships embedded in the representation of the word itself. This is the motivation
behind Vector Representations of Words.

The classical NLP representation of a word as an index or a one-hot unitary
vector fails in this objective since all words are orthogonal to one another - in this
representation, ‘Apple’ and ‘Orange’ are as alike (or dis-alike) as ‘Apple’ and ‘Car’.
This sort of representation is referred to as Bag of Words.

An alternative approach is to represent each words as a dense, continuous vec-
tor known as a Word Embedding. In this case we have an intuitive way to measure
similarity - their distance from each other (however measured). Any NLP model
that has used pre-trained word embeddings during its own training will adapt to vo-
cabulary outside its training set, since the vector representation of the out of training
vocabulary words will be similar to those inside the training vocabulary.

Word Embeddings have a long history in NLP (Hinton (1984)), but have
only recently succeeded in capturing the desired semantic relationships (Pennington
et al., Mikolov et al. (2013b)).

A key way of improving performance in NLP tasks is to initialised your al-
gorithm with pre-trained word embeddings. This is one of the most popular forms
of semi-supervised learning (also called ‘transfer learning’), and so significant time
in this literature review is devoted to exploring these approaches in detail. In par-
ticular, we note here that the Language Modeling task in our task hierarchy can be
viewed as a ‘local’ way of training word embeddings, and so is very related to some

of the methods discussed below.

2.3.2 Different Training Techniques

At the heart of training Word Embeddings is the distributional semantics hypothesis.
This states that a word’s meaning is defined by its context, and so words with similar
meanings will have similar distributions (Harris (1954)). All of the varying methods
for training word embeddings start with this assumption about the origins of word
meaning.

There are two paradigms in training word embeddings:
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Table 2.1: Example Co-occurrence Table

Probability ‘ k=solid k=gas k=water k= fashion
P(k—ice) 1.9x10* 6.6x10° 3.0x10° 1.7x107°
P(k—steam) 22x10° 7.8x10* 22x10° 1.8x10°
p(k—ice)/p(k—steam) | 8.9 8.5x 10% 1.36 0.96

1. Local Models. Local Models are designed to aid in making predictions
given an individual context window. Typically, they are trained by asking
a Neural Network to predict either the context for a given word (‘Skip-
Gram’), or a word for a given context (‘CBOW’). These models, including
the word2vec (Mikolov et al. (2013a)), have performed well on semantic re-
lationship tasks and exhibit surprising regularities in the vector space (e.g.
king — man 4+ woman = queen (Mikolov et al. (2013b))). These models are

not able to make use of word or phrase repetition in a corpus.

2. Global Models. Global Models leverage the statistical information of an
entire corpus. Typically, these models build co-occurrence matrices (For an
example please see Table 2.1) for each word in the corpus vocabulary and
attempt matrix-factorisation to recover a vector for each word. These models
have traditionally suffered from poor performance on semantic relationship
tasks, and computational complexity. Recently, however, new models such as
‘Global Vectors for Word Representation’ (‘GloVe’) (Pennington et al.) have

addressed some of these concerns.

The following sections, explore the main models in more detail, and make a

recommendation that we use GLoVe embeddings.

2.3.2.1 Local Models
The following explanations are based upon Mikolov et al. (2013a).

Neural Net Language Modeling (‘NNLM’). In 2003 Yoshua Bengio intro-
duced Neural Language Models (Bengio et al. (2003)), in which a Neural Network
outputs a probability distribution over the vocabulary for the next word in a se-
quence conditioned on the previous words. The model has one non-linearity fol-

lowing by a linear projection. Each word is represented by a dense vector, which is
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trainable by back propagation since the whole network is differentiable.

Neural Net Language Modeling is very computationally expensive. Consider
the computational complexity per training example (Mikolov et al. (2013a)) (D is
the word vector dimension, N is the length of the context, H is the hidden non-linear

layer size and V is the size of the vocabulary):

C=(NxD)+(NxDxH)+(HxV)

For a corpus with a vocabulary of potentially hundreds of thousands of words,
and a non-linear layer that may be 500 neurons wide, this cost term is dominated by
H x V. Even with adaptations to improve this performance, such as a Hierarchical
Softmax! (Morin and Bengio (2005)), the computation cost can only decrease V' to
logoV. The computational cost of a network of this size with a non-linearity pro-
hibits it from being trained efficiently on corpora of billions of words, the size of the
available data. Alternative models seek to maintain performance with architectures
that do not have any non-linearities.

Many of the POS and Chunk tagging results use a pre-trained embeddings
matrix called "'SENNA’ that has been trained using a method similar to the NNLM
(Collobert et al. (2011)).

Continuous Bag of Words (‘CBOW?’) The CBOW architectures makes sim-
plifying assumptions to the NNLM model in two ways. First, it removes the non-
linearity. Second, it averages the word-vectors before the word prediction. The
averaging function removes the information on the order of the context words, and
so the model is termed a ‘bag of words‘ model. A diagram of the CBOW model can
be seen in Figure 2.11.

By still using a Hierarchical Softmax, we derive the complexity of CBOW as
(Mikolov et al. (2013a)):

C=(NxD)+(Dxlogy(V))

"When you take a normal Softmax in a language model, your partition function has to sum
over the whole vocabulary. The idea behind a Hierarchical Softmax is that you only sum over the
‘relevant’ context for the word.
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Figure 2.11: CBOW Architecture

Skip-Gram Model The skip gram model does the reverse of the CBOW task -
it asks a neural network to predict the context given a target word vector. A diagram
of the Skip-Gram Model can be seen in Figure 2.12.

Specifically, each current word embedding is put through a log-linear classifier,
which predicts the words within a specified distance before and after the current
word. Like the CBOW model, we do not have non-linearities. Experiment results
have shown that the longer the context prediction, the better the word embeddings
but the higher the computational cost.

Again, using a Hierarchical Softmax we arrive at the complexity of the Skip-
Gram Model (Where Context is the context length). This model’s computational

complexity again allows it to be trained of corpora of billions of words :

C = Context X (D+D x logx(V))

2.3.2.2 Global Models

Global Models (unlike Local Models) use global statistical information about the
entire corpus, primarily in the form of co-occurrence relationships. Historically
they have suffered from computational complexity and poor performance on se-
mantic relationship tasks, but recent algorithms have addressed these concerns. We
therefore use GloVE embeddings for our experiments.

Latent Semantic Analysis (‘LSA’). LSA is a popular historical method of

creating word embeddings (Deerwester et al. (1990)). LSA starts by constructing
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Figure 2.12: Skip Gram Architecture

a co-occurrence matrix (for an example see Table 2.1) for an entire corpus, and
then finds a low-rank approximation to the co-occurrence matrix using Singular
Value Decomposition (‘SVD’). For example, say C is the co-occurrence matrix with
SVD C = ULV'. We then take the r (where r is the desired size of your word
embeddings) largest singular values to create Singular Value Matrix ¥, and create
the low-rank approximation C = ULV . It can be shown that the SVD minimises
the frobenius norm error for low-rank matrix approximation. Since the complexity
of computing the SVD is cubic in the size of the vocabulary, this method suffers at

large scale.

Latent Dirichlet Allocation (‘LDA’). LDA is generative model where a cor-
pus is viewed as a mixture of latent topics. First introduced as a graphical model
in 2003 (Blei et al. (2003)) (A diagram can be seen in Figure 2.13), the model has

been very influential in topic modelling.

LDA proceeds by defining each topic as a distribution over the vocabulary of a
corpus. If you have k topics, then it is simple to construct a word embedding - you
simply take the probability p(word|topic) for each of the words and topics to create

a topic-word matrix. The word vector is then simply a row in the matrix.

This method has the nice property that each of the dimensions in a word em-
bedding have a specific, human interpretable value. However, it fails to provide a
good way to represent semantic relationships - the distance between words in the

vector space does not relate to their similarity.



2.3. Vector Representations of Words 49
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Figure 2.13: LDA Graphical Model. « is is the parameter of the Dirichlet prior on the
per-document topic distributions, f is the parameter of the Dirichlet prior
on the per-topic word distribution, 6 is the topic distribution, ¥ is the word
distribution, Z is the topic matrix, W is the word matrix, N is the number of
words and M is the number of documents.

GloVe. GloVe (Pennington et al.) makes two key contributions to Global
Word Embedding training models that address important drawbacks in historical
approaches. First, it recognises that the ratios between co-occurrences are more
important than the absolute values. This means that noise in non-discriminatory
words (unrelated to the target word in question) is cancelled out, and the remaining
words are discriminatory (See Table 2.1). The second is that the low-rank approxi-
mation of the co-occurrence matrix scales quadratically on the number of non-zero
entries in the co-occurrence matrix, significantly enhancing computation time and

performance.

Specifically, GloVe seeks to approximate the log ratio co-occurrence matrix
with the formula w!'W; + b; + b; = log(X; ;), minimising the following weighted

least squares objective:

\%4
J="Y f(Xij)(wiwj+bi+bj— log(X; )’ (2.17)
ij=1

Where f(X; ;) is some weighting function, w;, w; are word vectors, b;,b; are
their biases and X; ; is the ratio co-occurrence matrix. The parameters, w, W, b,
and b are learned with a neural network. Here the way in which the matrix is only
trained on the non-zero elements is clear, since zeroed elements contribute nothing
to the loss. Empirical evidence shows a large majority of the entries of the matrix

are zero. Glove Word Embeddings exhibit the same linear substructure (e.g. King
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Table 2.2: Local & Global Model Comparative Results (300 dim, trained on 6bn data
points) (Pennington et al.)

Model Semantic-Syntactic Word Relationship Test Set | MSR Word Relatedness
Architecture | Semantic Accuracy [%] Syntactic Accuracy [%] Test Set
CBOW 63.6 67.4 65.7
Skip-Gram 73.0 66.0 69.1
GloVe 77.4 67.0 71.7

- Man + Woman = Queeen) as Skip-Gram models. Since GloVe trains globally and
has state of the art results on the Semantic-Syntactic Word Relationship test, it is

used in our experimental results.

2.3.2.3 Comparative Results

As we see in Table 2.2, the glove model has the best overall performance on the
Semantic-Syntactic Word Relationship Test, trained on the same number of tokens
and with the same embedding size. For this reason, we use the GloVe embeddings

as the primary choice in our architecture.

2.4 Improving Neural Network Performance

2.4.1 Word Embedding Shrinkage & Fine Tuning

It is common practise to initialise a neural network with pre-trained word embed-
dings to improve performance (e.g. Yang et al. (2016)). However, there are often
specific regularities associated with your task or corpus that mean that transforma-
tion or further training of the word embeddings is required. In these cases, we have
two approaches: (1) fine-tuning the word vectors by making them trainable param-
eters within our Neural Network (called fine tuning, used in Yang et al. (2016)), or
(2) adding a trainable non-linear projection from the word embeddings to the first
hidden layer (called word embedding shrinkage).

One key consideration is whether you want to train embeddings for words
not in your pre-trained corpus. This is particularly the case in biomedical text for
instance, where many words may not be found in the pre-trained word embeddings,

but you’d like to learn something about their semantic relationship to other words.

'No Comparative Results available for SENNA word embeddings
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In this case, you’d want to use fine tuning.

In other cases, fine tuning of pre-trained word vectors with large size (the
largest GloVe vectors are 300-dimensional) can lead to over-fitting. In these cases,
we could use a projection from the 300-dimensional space down to a smaller di-
mension. This projection forces the model to use only a portion of the information
contained in the word embedding and as such encourages generalisation.

In the existing work on POS tagging and Chunking, fine-tuning is the dominant
method of word embedding initialisation, and so this is used for our experimental

results.

2.4.2 Sentence Sequences & Window Sequences

Some tasks in natural language processing benefit from information not contained in
a sentence. For example, if you are trying to predict the next word in a paragraph,
you might want to condition on all of the words in the paragraph rather than just
those in the sentence. Algorithms that take a fixed-sized window before the word
are called ‘window’ sequence methods.

For other tasks, you might want to give hints to your algorithm to look at the
position of the word in the sentence. This could be the case for POS tagging and
Chunking, since they are trying to find structure in the sentence. In this case, it
makes sense to break up your corpus into sentences, and feed these into the algo-
rithm one by one, rather than as an arbitrary window. These methods are called
‘sentence’ sequence methods.

Since Language Modeling is the dominant task in our hierarchy, we are using

window batching - the established batching method for this task.

2.4.3 Dropout

Neural Networks are very powerful function approximators, which often means
that they are prone to over-fitting. One possible way to prevent over-fitting is to
average multiple different models to get an expected prediction. However, it is
computationally infeasible to exactly average large numbers neural networks (there

are 2" possible networks for n nodes), since it can take many days for a model to
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(a) Standard Neural Net (b) After applying dropout.

Figure 2.14: Dropout Example. On the left hand side you have a fully connected network.
On the right hand side you have a ‘thinned’ network where a random number
of connections are missing. (Srivastava et al. (2014))

train. Dropout can be seen as a way to provide an approximation of the average of
many different networks.

Dropout (Srivastava et al. (2014)) does this in a very simple, but very effec-
tive manner for Neural Networks. The basic idea is that you randomly ‘drop out’
connections in your neural network during training, using ‘thinned’ neural network
(Figure 2.14). At test time, we want to average the weights, which we approximate
by rescaling. In practice, it improves performance of neural networks by a signif-
icant margin (e.g. 0.2 percentage points on the MNIST data set (Srivastava et al.

(2014))).

2.5 Part of Speech Tagging

2.5.1 Introduction

A Part of Speech is a label for a group of words that have similar grammatical
properties, given to a word based upon its definition and where it appears in the
sentence. Simplified Parts of Speech should be familiar (noun, verb, adjective) but
a Part of Speech tag set that covers the variety of grammatical properties is far larger,
incorporating, for example, tokens for punctuation and numbers. POS tagging is the
task of labelling every word or token within a corpus with its POS tag. Figure 2.15
demonstrates an example tagged sentence.

The difficulty in writing a POS tagger arises because a single word can have

different roles within a sentence dependent upon the context. For example, the
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POS: NNS IN DT NN NNS VBP RB

WORD: Forecasts for the trade figures range widely

Figure 2.15: Part of Speech Tagging Example. Here, instead of groups of words being
identified, each word has it’s own label (its ‘Part of Speech’). For this sentence
we have 6 Parts of Speech: ‘NNS’ — Noun Plural, ‘IN’ — Preposition, ‘DT’ —
Determiner, ‘NN’ — Noun Singular, ‘VBP’ — Verb Non-3rd Person Singular
Present and ‘RB’ — Abverb. (Repeat of figure in Introduction).

word ‘entertaining’ in the sentence ‘“The Prime Minister was entertaining guests last
night’ is a verb, but in the sentence ‘The Prime Minister is an entertaining woman’
the word ‘entertaining’ is an adjective. As such, a successful POS tagger has to take

into account the context surrounding the target word.

There is ongoing debate as to the correct level of abstraction for a Part of
Speech, reflecting the ambiguity of the task. The original corpus for Part of Speech
Tagging is the Brown Corpus (by W. N. Francis and Kuera (1979), Greene (1981))
created in 1964. In subsequent years many other corpora were compiled, each
with a different Part of Speech tagging scheme, for example the LOB: Lancaster-
Oslo/Bergen corpus (Atwell (1982)), SEC: Spoken English Corpus (Taylor (1988))
, PoW: Polytechnic of Wales (Souter (1989)) corpus and UPenn: University of
Pennsylvania (Santorini (1990)) corpus. These competing tagging schemes reflect
the ongoing debate about the correct level of abstraction for Parts of Speech. Our
project uses the UPenn tag set as this has emerged as the benchmark for comparing
algorithmic performance (the complete tag set for Part of Speech can be found in

Appendix A).

2.5.2 Metrics & State of the Art Table

The performance of Part of Speech taggers are measured using simple accuracy - the
proportion of words correctly predicted. The benchmark Part of Speech corpus is
the Wall Street Journal Corpus. A table of state of the art results can be seen in Table
2.3. As you can see from the table, advances in Part of Speech tagging performance
are measured in the sub-percentage point scales - the total improvement over the

past 13 years has been 0.54 percentage points.
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Table 2.3: POS State of the Art Results

Percent Accuracy

Toutanova et al. (2003) 97.24 %
Shen et al. (2007) 97.33 %
Sgaard et al. (2011) 97.50 %
Collobert et al. (2011) 97.29 %
Huang et al. (2015) 97.55 %
Ling et al. (2015) 97.78 %
Yang et al. (2016) 97.55 %
Andor et al. (2016) 97.77 %

2.5.3 Recent Work in Part of Speech Tagging

Recent work on POS tagging has focused on using variants of Neural Networks
called Recurrent Neural Networks (‘RNNs’) to achieve state of the art performance.
The two current best-performing models for Part of Speech tagging (Ling et al.
(2015) and Andor et al. (2016)) are task-specific, and so do not incorporate any
Chunking data. The third best model, Yang et al. (2016), uses a multi-task net-
work for POS and Chunk and is more similar to our proposed structure. While all
three models train on supervised data, they make use of unsupervised representa-
tion learning in the form of vector representations of words. We will go into further

detail on word embeddings, and the different training regimes in Section 2.3.

The best performing classifier, Ling et al. (2015), uses a variant of Recur-
rent Neural Networks called Long-Short-Term Memory (LSTM) combined with
character-level vector representations to achieve state of the art results. In this
model, a novel way of combining character-level vector representations into word-
level representations gives a performance boost. It achieves 97.78% accuracy on
the Penn Tree Bank corpus.

The second best performing classifier, Andor et al. (2016), uses a neural-
network in an incremental transition-based parser Nivre (2006). In this model, a
neural network estimates the ’score’ of taking an action (predicting the next pos
token) given the current state (the previous words and predictions). It achieves

97.77% accuracy on the Penn Tree Bank corpus.

Our model is most similar to the third best performing classifier, Yang et al.
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CRF CRF CRF

Word GRU

Char GRU Word Emb

|

(a) Multi-Task Joint Training

Figure 2.16: Yang et al. (2016) Structure. (Repeat of figure in Introduction).

NP VP NP VP PP NP PP NP
| | | . | | | | Y | |
He redons the current acount de ficit wil na mow to only 18 billion in September

Figure 2.17: Chunk Tagging Example. In the diagram, the words encompassed by each
curly bracket are part of the same chunk. We have three types of Chunk in this
sentence: ‘NP’ — Noun Phrase, ‘VP’ — Verb Phrase and ‘PP’ — Proposition.
(Repeat of figure in Introduction).

(2016), in which POS tagging and Chunk tagging are trained jointly, with a shared
component and a task specific component (a diagram of the network can be seen
in Figure 2.16). In this model, a novel RNN cell that combines character-level and
word-level vector representations called a ‘Hierarchical GRU”’ is used to generate
a hidden latent state, with a Conditional Random Field (‘CRF’) used to create the

predictions. This models achieves 97.55 % accuracy on the Penn Tree Bank corpus.

2.6 Chunking

2.6.1 Introduction

The task of Noun-Phrase Chunking (‘Chunking’) is to find ‘chunks’ of sentences
that correspond to individual noun-phrases. The best way to develop an intuition
for what this means is to analyse an example sentence, demonstrated in Figure 2.17
for the sentence ‘[He] [reckons] [the current account deficit] [will narrow] [to]

[only 1.8 billion] [in] [September]’.



2.6. Chunking 56

S
NP VBD IN NP

I VAN

DT JJ JJ NN barked at DT NN

o |

the little yellow dog the cat

Figure 2.18: POS and Chunk Relationship Example (Bird and Klein (2009)). In this figure,
the chunks are at the first level in the tree (e.g. ‘NP’), with the POS on the
second level (e.g. ‘DT’). (Repeat of figure in Introduction).

Using the terminology of the original Chunking paper (Abney (1991)), a chunk
consists of a ‘content’ word at the root (noun), and surrounding ‘function’ words.
For example, in the chunk ‘the current account deficit’ contained in the example
sentence, the ‘content’ would be the ‘deficit’ with function words being ‘the’ and
‘current account’. These chunks form the basis for building a tree of the individual

noun-phrases, and ultimately a parse tree of the sentence.

The relationship between Chunking and Part of Speech tagging is explicit. In
the Chunking introductory paper, ‘Parsing by Chunks’ - (Abney (1991)), Abney
describes a three stage process by which you might parse a sentence. First, you read
in the words and assign a Part of Speech Tag, you then use a ‘Chunker’ to group
these words together into chunks depending on the context and the Parts of Speech,
and finally you build a parse tree on top of the chunks. In Figure 2.18 an example
sentence that has been parsed explicitly using Parts of Speech and Chunking can be

seen.

This relationship is a key motivation for using POS and Chunking as two tasks
in a multi-task learning architecture - there is an explicit rationale that suggests that
information from a POS prediction should improve the performance of your Chunk
predictor. In fact, the benchmark data set for Chunking provides Part of Speech tags
explicitly.

Chunking as an NLP task was introduced to the academic literature in 1991

by Steven Abney, and has been attempted with Machine Learning methods since

1995 (Ramshaw and Marcus (1995)). In 2000, the SIGNLL Conference on Com-
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Table 2.4: Chunk State of the Art Results

Fg_y Score
Kudo and Matsumoto (2001) | 93.91 %
Shen and Sarkar (2005) 94.01 %
Sun et al. (2008) 94.34 %
Collobert et al. (2011) 94.32 %
Huang et al. (2015) 94.46 %
Yang et al. (2016) 95.41 %

putational Natural Language Learning (‘CoNLL’) developed a corpus of POS and
Chunk-tagged words derived from the same Wall Street Journal text as the Penn
Tree Bank (Tjong Kim Sang and Buchholz (2000)). This corpus has become the
benchmark for chunk-tagging algorithms, and so is used in our experimental re-

sults.

2.6.2 Metrics & State of the Art Table

Chunking performance is measured using the Fg_; score. The Fg_; score is the
harmonic mean between the precision (the proportion of predicted chunks that are
correct) and the recall (the proportion of chunks that were predicted), where 8 con-

trols the weighting.

precision x recall

Fﬁ:l =2x —
precision + recall

The Fg_; score is evaluated on the chunk level rather than the token level. The
key benchmark data set is the CoNLL 2000 shared task (a subsection of the Wall
Stree Journal tokens). A list of state of the art results can be seen in Table 2.4.
Again, not that advances over the past 15 years of Chunking have only led to a 1.5

percentage point increase in F1 score.

2.6.3 Recent Work in Chunk Tagging

State-of-the-art performance in chunk tagging, like POS tagging, is dominated by
neural models. In particular, the current state of the art is the multi-task architecture
of Yang et al. (2016) described in Section 2.5.3 using a variation of the Recurrent

Neural Net. This model achieves 95.41% F1 score. The second best result in Chunk
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tagging is Huang et al. (2015), a very similar architecture to the state of the art,
except that it is task-specific, uses LSTMs rather than Hierarchical GRUs and uses
hand-crafted task-specific features. This model achieves 94.46% F1 score. Both use
unsupervised representation learning in the form of vector representations of words.

One key point is that the multi-task architecture exploited in Yang et al. (2016)
does not explicitly represent the hierarchical relationship of the tasks discussed in
the previous section. In this model, the information learnt by the POS CRF layer
in Figure 2.16 can not be used by the chunk-specific CRF layer. This means that a

portion of the relevant information for Chunking is not available.

2.7 Language Modeling

2.7.1 Introduction

In machine translation or speech recognition we often want to find a way of evalu-
ating a word-by-word prediction on a sentence level, or, if we are building a piece
predictive text software we want to find a way for predicting the next word in a
sentence. Both of these tasks are referred to as ’Statistical Language Modeling’. It
is considered one of the essential tasks in Natural Language Processing.

As hinted at, Statistical Language Modeling commonly refers to two tasks: the
task of assigning a probability to a sequence of words p(W) = p(wi,wa, w3, wy),
and the task of estimating probability of the next word in a sequence, conditioned
on the previous words p(ws|ws,w3,wz,w1). We can see that these tasks are in-
timately related by using bayes’ rule to decompose the joint probability of a se-
quence: p(W) = p(wi,wa,w3,wa) = p(wi)p(wz|wi)p(w3|wa, wi) p(wa|ws, wa, wi)
—1in fact, the conditional task is normally used as a way of generating a sentence W
with a high joint probability. Figure 2.19 is an example of the conditional language
modelling task.

Evaluating . max p(wi,wa,...,wy,) directly is in general computationally
intractable. Consilcieirtﬁatn the number of values each word could take is the size of
the language vocabulary (perhaps millions of words) and that the sentence lengths

can be hundreds of words long. Without any prior knowledge about the factorisation
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Input Label

At this point we'd like

this point we'd like to

point we'd like to point

we'd like to point out

Sliding window of previous words is the input sequence Goal is predict
next word in
sequence

Figure 2.19: Language Modeling Example. (Repeat of figure in Introduction)

of the joint probability distribution, the best running time for the computation is

exponential.

Language Modeling is the final task in our task hierarchy. To see why this is the
case consider again the parse tree in Figure 2.18. Here you can see that knowledge
of the incomplete parse tree, particularly where a noun-phrase ends and another
begins, can be helpfully used to inform the probability distribution of the following
word. For example, knowing that ‘dog’ is the end of the noun-phrase that describes
the little dog gives you a clue that the next word may be part of the a verb phrase,

for example ‘barked’.

Language Modelling, unlike POS and Chunk Tagging, does not require la-
belling and so can be considered a form of unsupervised learning. This means that
the corpora used for language modeling are orders of magnitude larger than those
used for POS and Chunk tagging. Corpora used for language modeling include
the Penn Tree Bank (Taylor et al. (2003)) and the Thomson Reuters News Corpus
(Lewis et al. (2004)), each an order of magnitude larger than the CoNLL-2000 POS
and Chunk tagging corpus.

In our experiments, Language Modeling is used solely as an unsupervised aux-
iliary task for the primary tasks of POS tagging and Chunking, and therefore we do
not present results of the Language Model to be evaluated against existing bench-

marks.
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Task 3: Language Modeling

=

Clues about the ends of phrases can be used by the
language model

Task 2: Chunk Tagging

=

POS are the foundational building blocks of Noun-
Phrase Chunks

Task 1: Part of Speech Tagging

Figure 2.20: Task Hierarchy Rationale. Note that while at inference time information only
flows up the hierarchy, during training senior tasks in the hierarchy can im-
prove performance of junior tasks through the shared layer. (Repeat of figure
from Introduction).

2.8 Task Hierarchy Summary

Now that each of the three tasks (POS tagging, Chunk tagging and Language Mod-
eling) have been introduced, we’ll restate the argument for treating them as a task
hierarchy?. First, the formulation of Chunk Tagging explicitly makes use of POS
tags as the foundational information from which to build a noun-phrase chunk, so
these two tasks are obvious candidates for tasks 1 and 2. Second, the noun-phrase
structure of a sentence gives information to the language model about the probabil-
ity distribution of the next word and so is a strong candidate for the third task. A

schematic of the task hierarchy can be found in Figure 2.20.

ZFor the sake of clarity, a task hierarchy is a group of tasks where the outputs of tasks lower down
the hierarchy provide useful information for tasks higher up in the hierarchy.



Chapter 3

Our Contribution

The approaches discussed in the previous Chapter only implicitly represent the rela-
tionship between POS tagging, Chunking and Language Modeling. Most recognise
the impact of language modeling (or related tasks) on POS and Chunking through

the use of Word Embeddings, but only one trains POS and Chunk jointly.

As argued in the introduction, POS, Chunking and Language Modeling all
form part of an example linguistic hierarchy, and that this hierarchy could be em-
bedded in the model architecture. Our contribution is to show through this example
that exploiting hierarchical structure in linguistic tasks can improve performance of

neural network algorithms.

Our contribution to the current approaches for POS and Chunk tagging are then

twofold:

1. We explicitly create a hierarchical structure for the POS, Chunking and Lan-
guage Modelling that ensures information from lower tasks in the hierarchy

can be used by those higher up; and

2. Second, by incorporating the Language Model we can trained unsupervised

representations that improve both the POS and Chunking performance.

Figure 3.1 is a diagram of our model structure. The following two subsections

will expand on these contributions in more detail.
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Figure 3.1: Our Model

3.1 Explicit Task Hierarchy

Our model embeds an explicit hierarchy in the multi-task network by feeding the
outputs from each task specific layer into the inputs of the tasks higher up the hier-
archy.

Concretely, the output of the POS GRU layer (the base task in the hierarchy) is
a probability distribution over the POS tags, and is represented by a vector P”. This
vector is multiplied with a matrix Wpgg of where each row corresponds to a vector
representation of a POS tag. The result of the calculation P Wpqg is then con-
catenated with the hidden state of the shared layer to be fed into the Chunk-specific
layer - concatenate(POSVector, HiddenState). A similar process is conducted for
Chunk tagging, with both the POS vector and Chunk vector representations fed into
the Language Model. A diagram of this structure for POS and Chunk can be seen
in Figure 3.2.

This type of connection, where we learn a vector representation of POS tags
and Chunk tags, is motivated by two factors. The first is that, by representing POS
tags as vectors we have the opportunity to learn regularities within POS tags - for
example, to find which POS tags are used in similar contexts - and to analyse that
qualitatively. The second is that we are able to give this richer, continuous repre-
sentation of the POS output to the Chunking layer.

As we’ve previously discussed, given the explicit hierarchical relationship be-
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Chunk GRU Layer

2 )

Concatenate
POS Vector Representation (—*—\ Shared Layer GRU Output
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L)

Predicted POS Distribution for next POS Token POS Embedding Matrix
(POS GRU Output — 1 X # POS Tags Vector) (# POS Tags X POS Vector Embedding Size Matrix)

— [ | . [ - Dot Product

Figure 3.2: Hierarchical Link Example

tween POS and Chunking, and the implicit hierarchical relationship between POS,
Chunking and Language Modeling, explicit connections between tasks should im-
prove the performance of Chunking and Language Modelling - tasks 2 and 3 in the

hierarchy respectively.

3.2 Semi-Supervised Learning

Semi-supervised learning describes a family of techniques in which an unsupervised
task (where there are typically many data) is optimised to give a set of parameters
which improve the performance of a related supervised task. These techniques are
particularly useful in situations where there labelling data is particularly costly. A
full definition of semi-supervised learning can be found in Section 2.1.

Our model employs semi-supervised learning by alternately optimising the
joint loss of POS, Chunking and Language Modeling on a supervised corpus, and
then optimising just the Language Modeling loss on an unsupervised corpus. Since
there is an explicit shared representation at the bottom layer of our model, and the
outputs of Chunk and POS and directly connected to the Language Modelling spe-
cific layer, the error from the unsupervised task is back propagated through the the
weights of the Chunk and POS layers. In the semi-supervised learning terminol-
ogy of Ando and Zhang (2005) the unsupervised Language Modeling task is the

‘auxiliary’ task, and the supervised Chunking and POS tagging are ‘target’ tasks.
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Task ‘ Unsupervised/Supervised
POS Tagging Supervised
Chunking Supervised
Language Modeling Unsupervised

Figure 3.3: Table of Supervised and Unsupervised Tasks

We now present the intuition for why explicit hierarchical connections between
tasks should mean that our model benefits more from the semi-supervised train-
ing schedule. One of the challenges in machine learning is over-fitting - this is
where the model ‘fits’ too closely to the probability distribution of the training set,
rather than the ‘underlying’ probability distribution of the task in general. In our
model, the language model makes use of the POS and Chunk predictions during the
unsupervised-only training, where the data have a different probability distribution
to the training set. This acts as a penalty to attempts by the POS and Chunk net-
work to memorise the training set, since those predictions would adversely affect

the unsupervised task.



Chapter 4

Data Sets

Our experiments seek to demonstrate that our contributions improve performance
in two domains: Newspaper Text and Biomedical Text. As our experiments require
a large unsupervised corpus for each of the two domains as well as a supervised
corpus, we require 4 data sets in total. A summary of the data sets we use can be

seen in Table 4.1.

4.1 Newspaper Text

4.1.1 CoNLL 2000 Chunking Task

In 2000, the SIGNLL Conference on Computational Natural Language Learning
(‘CoNLL’) published a shared task for predicting the chunks of Newspaper text.
This has emerged as the benchmark for evaluating Chunking performance. How-
ever, in our experiment we use it both for POS tagging and Chunking.

The CoNLL 2000 Chunking task contains three columns: the first column is
the word token, the second column is a POS token predicted by the Brill tagger
(Brill (1992)), and the final column is the Noun-Phrase Chunk (an example can be
seen in Table 4.2). Note that the Chunk tag contains a prefix (‘B’ for beginning, ‘I’

for intermediate) which is not evaluated at test time.

Labelled \ Unlabelled
Newspaper Text | CoONLL 2000 Chunking Task (259,104 tokens) | Penn Tree Bank Word Tokens (929,589 tokens)
Biomedical Text Genia Dataset (410,026 tokens) Pubmed Abstract Scrape (2,990,385 tokens)

Table 4.1: Summary of Data Sets By Domain
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Word Token | POS Token | Chunk Token
He PRP B-NP

reckons VBZ B-VP

the DT B-NP

current JJ I-NP

Table 4.2: Example Data

Table 4.3: Chunk State of the Art Results

Fg_y Score
Kudo and Matsumoto (2001) | 93.91 %
Shen and Sarkar (2005) 94.01 %
Sun et al. (2008) 94.34 %
Collobert et al. (2011) 94.32 %
Huang et al. (2015) 94.46 %
Yang et al. (2016) 95.41 %

The word tokens for training are sections 15-18 from the Wall Street Corpus,
the word tokens for testing is section 20.

The CoNLL 2000 Chunking Task is a recognised benchmark for Chunking
only, and not for POS (since the POS tokens are derived from the Brill Tagger). A

table of state of the art results for Chunking can be found in Table 4.3.

4.1.2 Penn Tree Bank Word Tokens

The Penn Tree Bank Word Tokens corpus comprises c. 1 million word tokens taken
from the Wall Street Journal. The full Penn Tree Bank includes the Parts of Speech
as well as the parse trees, but for our purposes we just use the raw word tokens.

The data is preprocessed to be in the same format as the CoNLL 2000 chunking
task, but with a ‘null’ token for POS and Chunk.

4.2 Biomedical Text

4.2.1 The Genia Corpus

The GENIA corpus is a collection of Medline abstracts (intended to represent the
literature of molecular biology) which has been annotated with POS and Chunk tags
(among others).

It was shown in Tsuruoka et al. (2005) that taggers designed for Newspaper
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text can perform poorly on Biomedical text. This is because biomedical text has
a lot of specialist vocabulary, often with a different writing style to that found in
normal text. For this reason, we use the Genia corpus to test the robustness of our
taggers.

The current state of the art for the Genia corpus POS tagging is 98.49 % (Tsu-

ruoka et al. (2005)). The performance on chunking is not reported as a benchmark.

4.2.2 Word Tokens from Pubmed Abstracts

There are no standard corpora for unsupervised learning in biomedical text. As
such, we had to create our own. To do so, we downloaded the first 3m tokens of
the abstracts on the Pubmed ! database matching the keywords used for the original
Genia Corpus.

As for the Penn Tree Bank Word Tokens, we pre-process the data into the same

format as CoNLL 2000 but with null tokens instead of POS and Chunk.

Uhttp://www.ncbi.nlm.nih.gov/pubmed



Chapter 5

Experimental Results

In this Chapter we examine the architecture impact of our contributions on the per-
formance of both Part of Speech tagging and Chunking. First, we create baseline
results using a simple multi-task architecture for POS, Chunking and Language
Modeling. We highlight here that we are unable to replicate the results achieved by
Huang et al. (2015) with a very similar architecture.

We then introduce our contributions - the explicit task hierarchy and semi-
supervised learning and demonstrate the situations in which performance improve-
ment can be seen under a base case hyper-parameter setting.

Finally, we run through a selection of the hyper-parameters in the model and
demonstrate the performance sensitivity for each hyper-parameter. We then present

results with our best hyper-parameter setting and compare them to state of the art.

5.1 Baseline Model

Our Baseline Model is a basic multi-task architecture, based upon the the model in
Yang et al. (2016). In our architecture, we have one shared GRU layer of size 256,
then each task has an individual GRU layer, again of size 256. Finally, we project
this onto a tag vector and take the Softmax Cross-Entropy loss. A diagram of the
baseline model can be seen in Figure 5.1.

We train this model jointly for 100 epochs. We use Genia 300-dimensional
word embeddings following the conclusions of section 2.3. We have batches of size

64 x 64, with window sequences.
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Baseline Architecture RNN

Softmax XEntropy Softmax XEntropy Softmax XEntropy
Loss Loss Loss

t 4 t
Projection Projection Projection
Size: # POS tags Size: # Chunk tags Size: Vocab Size
t t t

GRU Layer2 GRU Layer2 GRU Layer 2
Size: 256 Size: 256 Size: 256
GRU Layer 1
Size: 256
t

Word Tokens
Size: Word Dim

Figure 5.1: Baseline Architecture

| Test Fg_; (CoNLL) | Test Fg_; (Genia) |
Baseline Model | 91.95 % | 85.3 % |

Table 5.1: Baseline Results - Chunk

We run the baseline model on both the CoNLL 2000 and Genia data sets. Base-
line results for Chunking can be seen in Table 5.1, and baseline results for POS

tagging can be seen in Table 5.2.

5.2 Our Contributions

In this section we discuss the improvements in performance attributable to our con-
tributions. We show that building a hierarchical model not only improves the Chunk
F1 score of our baseline model by 0.3 % on ConLL 2000, but provides a new way
to visualise the learnt representations of POS and Chunking. We then move on
to discuss semi-supervised learning and show that, while gains can be seen when
the model is initialised with pre-trained word embeddings, the real gains are found

when the model is not pre-initialised.

‘ Test Accuracy (CoNLL) ‘ Test Accuracy (Genia) ‘
Baseline Model ‘ 96.2 % ‘ 97.3 % ‘

Table 5.2: Baseline Results - POS
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‘ Test Fg—; (CoNLL) ‘ Test Fg—_; (Genia) ‘
92.24 % 85.82 %
91.95 % 85.79 %

With Connection
Without Connection

Table 5.3: Hierarchy Test Results - Chunk

\ Validation CoNLL \ Test Genia \
96.4 % 97.8 %
96.2 % 97.6 %

With Connection
Without Connection

Table 5.4: Hierarchy Test Results - POS

5.2.1 Hierarchical Model

Our first contribution is to explicitly represent the task hierarchy in the structure of
the neural network. In our experiments, we test our baseline model both with and
without the connections between tasks, and find an improvement in performance.
The results of this experiment can be found in Tables 5.3 and 5.4.

One of the additional advantages of such an architectures is that we learn a
dense-vector representation of POS and Chunk tags, similar to the word vector rep-
resentations discussed in Section 2.3. In Figure 5.2 we present the TSNE visuali-
sation (Maaten and Hinton (2008)), where we can see that the neural network has
encoded the difference between tags for the beginning of chunks (prefixed with a

‘b’) and tags for intermediate chunks (prefixed with an ‘1’).

5.2.2 Semi-Supervised Learning

Our second contribution is achieving semi-supervised learning by training our lan-
guage model on an unlabelled corpora. In our semi-supervised training schedule
we mix unlabelled and labelled batches probabilistically according to some value
0 < o < 1. We only consider a training epoch complete once all of the PTB and
CoNLL data has been seen by the model.

The intuition behind this mix percentage is that, if the model sees too many
unsupervised tasks in a row, it will start to ‘forget’ the Chunk-specific and POS-
specific layers. However, if the model sees to many supervised tasks in a row some
of the benefit of the unsupervised task will be lost.The results of the experiment

with this parameter can be seen in Tables 5.5 and 5.6.
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Figure 5.2: TSNE Visualisation of Chunk Tags. Here we can see that the vector repre-
sentation has encoded the difference between a beginning of chunk and the

40 %
50 %
60 %
70 %

middle/end of a chunk.
Validation Fp_ (CoNLL) | Validation Fp_i (Genia)
92.6% (-0.2 %) 86.1 % (+0.6 %)
92.8 % (+0.0 %) 86.4 % (+0.9 %)
92.8 % (+0.0 %) 86.3 % (+0.8 %)
93.0 % (+0.2%) 86.4 % (+0.9 %)
92.8 % 85.5 %

100 %

Table 5.5: Mix Percentage - Chunk

In Tables 5.5 and 5.6 we present the results of varying the mix percentage on

the validation set, while keeping the total amount of labelled and unlabelled data

constant. As we can see, there is a minor impact associated with varying the mix

percentage, with the best results being achieved in the 60 % to 70 % range. While

the overall impact on performance of the unsupervised data in this example was

small, there was a significant improvement in the speed of convergence as can be

seen in Figure 5.3.

The language modeling task is similar in spirit to the tasks used to generate
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Validation CoNLL | Validation Genia
40 % 958 % (-0.6 %) | 97.3 % (+ 0.0 %)
50 % 96.3 % (-0.1 %) | 97.3 % (+ 0.0 %)
60 % 96.3 % (- 0.1 %) | 97.6 % (+ 0.3 %)
70% | 96.4 % (+0.0 %) | 97.5 % (+ 0.2 %)
100 % 96.4 % 97.3 %

Table 5.6: Mix Percentage - POS

POS Train Set Accuracy vs. Epoch Mumber

og

08
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POS Trian Set Accuracy
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Figure 5.3: POS Accuracy on Training Set by Epoch. Here we can see that, by incorporat-
ing unlabelled data, we converge more swiftly.

the word embeddings discussed in Section 2.3, and for this reason at least some
of the benefit of using the unlabelled task is already provided by initialising our

embeddings matrix with pre-trained vectors.

For this reason, we demonstrate the impact of using semi-supervised learning
in a situations without any pre-trained word embeddings (Tables 5.7 and 5.8). Here,
we can see more than a 2 percentage point increase in performance on the Chunk
F1 score for CoNLL 2000 vs. no unsupervised data, a performance improvement
comparable to the increase seen by using pre-trained word embeddings. This is
a promising result, since it hints that for tasks in languages where there are too

few data to train word embeddings (or where the cost is too great), a comparable
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No Pre-Trained Embeddings

With Pre-Trained Word Embeddings
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Test Fg_; (CoNLL)

Test Fﬁzl (Genia)

Test Fg_; (CoNLL)

Test Fﬁzl (Genia)

Baseline Model
Semi-Supervised

86.2 %
88.3 % (+ 2.1 %)

853 %
85.7 % (+ 0.4 %)

91.9 %
92.3 % (+ 0.4 %)

85.8 %
85.8 % (+ 0.0 %)

Table 5.7: No Embeddings Semi-Supervised Summary Results - Chunk

No Pre-Trained Embeddings

With Pre-Trained Word Embeddings

Test Fg_; (CoNLL)

Test Fg_; (Genia)

Test Fg_; (CoNLL)

Test Fg_; (Genia)

Baseline Model
Semi-Supervised

92.4 %
94.2 % (+ 1.8 %)

97.5 %
97.6 % (+ 0.1 %)

96.2 %
96.2 % (+ 0.0 %)

97.3 %
97.6 % (+ 0.3 %)

Table 5.8: Semi-Supervised Summary Results - POS

performance increase can be attained by adding an auxiliary unsupervised tasks.

5.3 Hyper-parameter Settings

Hyper-parameter optimisation can have an large impact on machine learning mod-
els, in some cases improving performance by 3-4 %. For this reason, this sec-
tion is devoted to describing some of the most important hyper-parameters in our
model and investigating the sensitivity of the performance metrics to each hyper-
parameter.

The parameter settings are chosen by 1-fold cross-validation. This is where we
hold back a portion of the training data to ‘test’ our hyper parameters on (known as
the ‘Validation Set’). We then optimise our model for the validation set, and then
evaluate the overall performance on the test set. With machine learning algorithms
that are not so expensive to train as Neural Nets, it is common to do ‘x-fold’ cross-
validation in which the experiment is run x times with a different training set and
hyper-parameters are chosen by majority.

It’s important to note that flexing only one hyper-parameter at a time, and then
combining them into a ‘best setting’ will in general not provide the best combined
hyper-parameter combination. This is because the settings of individual hyper-
parameters have an effect on the rest of the model. For example, if you flex the
width and depth of a neural network this increase the sum of all the weights, mean-
ing that any regularisation that acts upon this total sum may need to change.

However, conducting a grid search on all hyper-parameters is not something

that is computationally reasonable to do. For this reason, and for exposition reasons,
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Sequence Length
Validation Fp— (CoNLL) Validation Fp_i (Genia)
16 32 64 16 32 64
16 | 91.44 % | 92.38 % | 92.89 % | 84.99 % | 85.82 % | 86.27 %
32 191.63 % | 92.24 % | 92.34 % | 85.17 % | 85.49 % | 85.84 %
64 | 91.29 % | 92.24 % | 92.73 % | 84.89 % | 85.45 % | 86.20 %

Table 5.9: Batch Size Results - Chunk

we are investigating each hyper-parameter separately. Once we have investigated
the importance of the hyper-parameters, we will fix them in the ‘best setting’ and
present our final results.

The baseline model for these hyper-parameter experiments includes connec-

tions between tasks and unsupervised learning with the mix percentage at 50 %.

5.3.1 Batch Size

In Stochastic Gradient Descent the data is fed in batches. The size of these batches
will have an effect on the convergence rate and the performance of the model. In
Table 5.9 we find that the larger sequence sizes boost performance, but that larger
batch sizes have a very slight detrimental performance. This detrimental perfor-

mance may be too small to consider statistically significant.

5.3.2 Word Embeddings

Word embeddings are the most common form of semi-supervised learning in Natu-
ral Language Processing. In this subsection we compare fine-tuning no pre-trained
word embeddings, SENNA, GloVe 50 dimensional, GloVe 100 dimensional and
GloVe 300 dimensional word embeddings without any projections and see that
SENNA 50 dimensional embeddings perform best. Results can be seen in Tables
5.10 and 5.11.

This is surprising result, since GloVe embeddings are trained on a larger cor-
pus, are global vectors, and have performed better on semantic similarity tasks.
One potential explanation for these results it that the training task for SENNA word
embeddings is based upon a multi-task sequence tagging architecture. For more

information, please see Section 2.3.
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Validation Fg_i (CoNLL)

Validation Fg—i (Genia)
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No Word Embeddings

SENNA
Glove 50
Glove 100
Glove 200
Glove 300

88.3 %
93.0 % (+ 4.7 %)
91.5 % (+ 3.2 %)
92.4 % (+ 4.1 %)
92.8 % (+4.5 %)
92.8 % (+4.5 %)

86.1 %

85.8 % (- 0.3 %)
85.3 % (- 0.8 %)
85.6 % (- 0.5 %)
86.3 % (+ 0.2 %)
86.1 % (+ 0.0 %)

Table 5.10: Word Embedding Results - Chunk

Validation CoNLL | Validation Genia

No Word Embeddings 94.2 % 97.6 %
SENNA 96.6 % (+2.4 %) | 97.7 % (+0.1 %)
Glove 50 96.0 % (+1.8 %) | 97.5 % (-0.1 %)
Glove 100 96.5 % (+2.3 %) | 97.6 % (+0.0 %)
Glove 200 96.4% (+2.2 %) | 97.6 % (+0.0 %)
Glove 300 96.1 % (+1.9 %) | 97.5 % (-0.1 %)

Table 5.11: Word Embedding Results - POS

5.3.3 Optimiser

As discussed in Section 2.2.4, the choice of optimisation technique can have a

significant effect on the final accuracy. The two best performing algorithms for

Chunking use Adagrad with an annealing learning rate. In Tables 5.12 and 5.13 we

compare this optimiser to Adam, and find that Adam has the better performance.

5.3.4 Dropout

Dropout is a method to reduce overfitting in neural networks (Srivastava et al.

(2014)). It operates by randomly removing connections in the neural network, help-

ing to reduce co-adaptation of artificial neurons. The probability of removal is a key

| Validation Fg_; (CoNLL) | Validation Fg_; (Genia) |

Adagrad
Adam

89.6 %
92.5 % (+ 2.9 %)

85.4 %

86.3 % (+ 0.9 %)

Table 5.12: Optimisation Results - Adam and Adagrad

‘ Validation CoNLL ‘ Validation Genia ‘

Adagrad
Adam

94.5 %
96.2 % (+ 1.8 %) | 97.5

96.2 %
% (+ 1.3 %)

Table 5.13: Optimisation Results - Adam and Adagrad.
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| Validation Fg_; (CoNLL) | Validation Fg_; (Genia) |

0.4 92.75 % 85.85 %
0.5 92.94 % 86.02 %
0.6 95.72 % 85.91 %

Table 5.14: Dropout Results - Chunk

‘ Validation CoNLL ‘ Validation Genia ‘

0.4 96.2 % 97.5 %
0.5 96.0 % 97.3 %
0.6 96.0 % 97.3 %

Table 5.15: Dropout Results - POS

regularisation parameter in the model, tested in Tables 5.14 and 5.15. Here we find

that a 50 % chance of removal is optimum.

5.4 Best Model

In this section we present the model performance for Genia and CoNLL using the
best hyper-parameter settings (Tables 5.16 and 5.17). While these results are not
state of the art, they demonstrate that good performance can be achieved using our
contributions. Further work will investigate how to make additional architecture

changes to reach state of the art performance.

5.5 Qualitative Analysis of Error Sentences

Insight into our model can be generated from sentences where predictions are in-
correct. For example, in Figure 5.4 we see a sentence from the CoNLL Newspaper
data set which our model has failed to predict accurately. In this case, the word

‘short’ is part of the Noun-Phrase ‘a short attention span’, but our model predicts as

| Test Fg_; (CoNLL) | Test Fg_; (Genia) |
Baseline Model ‘ 92.7 % ‘ 85.9 % ‘

Table 5.16: Optimised Results - Chunk

‘ Test Accuracy (CoNLL) ‘ Test Accuracy (Genia) ‘
Baseline Model | 96.4 % | 97.7 % |

Table 5.17: Optimised Results - POS



5.5. Qualitative Analysis of Error Sentences 77

Our model fails to predict when short
is a part of the noun phrase (in short
attention span), rather than an

adjective
<L =

Prediction

Gold Token

Word Token - [EFEREN I attention J _span

Figure 5.4: Example of Sentence our Model gets Wrong in Newspaper Text

Our model doesn’t Since the model still thinks
recognise in-vitro as an we’re within a noun-phrase,
adverb, since it comes after it doesn’t recognised
‘an’ and ‘vitro’ is normally ‘mutagenized derivative’ is a
noun. distinct noun phrase.
Prediction L
Gold Token i I ;

Figure 5.5: Example of Sentence our Model gets Wrong in Biomedical Text

an adjective - presumably because that is the dominant label in the corpus.

We can also look at an example of a sentence that the model predicts incorrectly
from the Genia Biomedical data set (Figure 5.5). Here we see the impact of many
infrequent words, and their ambiguous usage. For example, ‘in vitro’ should be
regarded as a single adverb chunk, however our model gets this wrong because it
requires an unusual use of the word ’in’. These Latin phrases can greatly complicate

the Chunking task.



Chapter 6

Conclusions & Suggestions for

Further Work

6.1 Summary

This thesis sought to investigate whether linguistically motivated task hierarchies
in Machine Learning could improve algorithm performance. In particular, we were
interested in demonstrating improvements for particular example - POS, Chunking
and Language Modeling. We showed that explicitly representing the task hierarchy
can bring small gains, but provide valuable representations of junior tasks. Addi-
tionally, we showed an effective way to combine tasks with varying numbers of data

through semi-supervised learning.

Concretely, the beginning of this thesis we introduced two questions we hoped
to answer. We’ll revisit each of those in turn briefly describing the results of our

investigation and suggestions for further work.

1. Whether we can explicitly embed hierarchical task structure in neural archi-
tectures for Part of Speech (‘POS’) tagging, Chunk tagging (also known as Noun-
Phrase Chunking or Shallow Parsing) and Language Modeling, and what perfor-
mance this explicit hierarchical structure brings.

We found that explicit embedding of hierarchical task structure can improve
performance and offer valuable insight into the vector representation of low-level

tasks learnt by the neural network.
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Further work would investigate whether (1) this performance improvement can
be observed in other putative task hierarchies in Natural Language Processing and
other machine learning disciplines; (2) ways to quantify how much transfer there is

between each of the tasks.

2. Whether, by incorporating an unsupervised auxiliary task (Language Mod-
elling) to two supervised target tasks (POS tagging and Chunking), we can improve

performance by conducting semi-supervised learning.

We found that semi-supervised learning as described can improve performance
both on models initialised with pre-trained word embeddings. However, the best
results were found in situations with no prior pre-training, where our auxiliary task
can achieve much of the unsupervised representation learning achieved with far

larger corpora and training resources in of the time and with far fewer data.

6.2 Critique

While our results are promising, there remain a number of outstanding issues with

our algorithm. In this section we will discuss three.

The first critique is that task hierarchies only provide very small improvements
in performance, and don’t seem to hold up well across domains. This, however,
should be seen in the context of only a 0.5 percentage point improvement in POS

accuracy over the past 13 years.

The second critique is that these models have the requirement to know be-
forehand which tasks are hierarchically related, rather than this relationship being
learnt, which presents a barrier to these models being used more generally. A naive
solution, which is to build lateral connections between all tasks, would increase
model capacity exponentially but with huge redundancy. At present there doesn’t
seem to be an obvious manner to compress the information flow or prune the model
adaptively (Rusu et al. (2016)) to address redundancy.

The third critique is that our model is still prone to catastrophic forgetting of
previously learnt tasks during training of a senior task if there is no reservoir of per-

sistent training data. For example, our attempt to address this by alternating batches
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requires us to have the POS and Chunk training data to hand. There are not many
situations in which this could be the case, and we certainly do not want to have to
train every single task when learning a new one. One naive solution - fixing the
parameters of previously learnt weights as in Rusu et al. (2016) - means that addi-
tional generalisation from exposure to new tasks can’t take place, an unsatisfactory

result.

6.3 Suggestions For Further Work

Further research would first investigate the outstanding problems mentioned above.
Concretely: (1) it would investigate methods for information compression and adap-
tive pruning of networks so that only utilised capacity in the network was kept,
(2) it would investigate methods for avoiding catastrophic forgetting of previously
learned tasks, potentially through parameter fixing (albeit with the problems men-
tioned above), but also through methods such as distillation (Rasmus et al. (2015)).

The final area of research would be on alternative tasks for achieving semi-
supervised learning. These might include methods inspired by using Generative
Adversarial Networks as an auxiliary task in Computer Vision experiments (Sali-
mans et al. (2016)), or alternative unsupervised tasks in Natural Language Process-

ing.



Appendix A

UPenn Part of Speech Tag Set



Table A.1: UPenn Tag Set

Number Tag Description

1. CC Coordinating conjunction

2. CD Cardinal number

3. DT Determiner

4. EX Existential there

5. FW Foreign word

6. IN Preposition or subordinating conjunction
7. 1 Adjective

8. JJR Adjective, comparative

9. JIS Adjective, superlative

10. LS List item marker

11. MD Modal

12. NN Noun, singular or mass

13. NNS | Noun, plural

14. NNP | Proper noun, singular

15. NNPS | Proper noun, plural

16. PDT | Predeterminer

17. POS | Possessive ending

18. PRP Personal pronoun

19. PRP$ | Possessive pronoun

20. RB Adverb

21. RBR | Adverb, comparative

22. RBS Adverb, superlative

23. RP Particle

24. SYM | Symbol

25. TO to

26. UH Interjection

27. VB Verb, base form

28. VBD | Verb, past tense

29. VBG | Verb, gerund or present participle
30. VBN | Verb, past participle

31. VBP | Verb, non-3rd person singular present
32. VBZ | Verb, 3rd person singular present
33. WDT | Wh-determiner

34. WP Wh-pronoun

35. WPS$ | Possessive wh-pronoun

36. WRB | Wh-adverb
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