
Semantic parsing from English to
AMR using Imitation Learning

James Goodman

Supervisors: Andreas Vlachos &
Jason Naradowsky

This report is submitted as part requirement for the MSc Degree in CSML at Uni-

versity College London. It is substantially the result of my own work except where

explicitly indicated in the text. The report may be freely copied and distributed

provided the source is explicitly acknowledged.

September 4, 2015

Abstract

The Abstract Meaning Representation (AMR) is a recent standard for representing

the semantics of English text that is not domain-specific and provides a machine-

interpretable format that encapsulates key parts of the meaning of a sentence. An

automated parser to convert English sentences to AMR would be very helpful in

machine translation, human-computer interaction and other areas.

We develop a novel transition-based parsing algorithm to obtain results in this

English to AMR translation task that are close to state-of-the-art using simple imita-

tion learning, in which the parser learns a statistical model by imitating the actions

of an expert on the training data.

We attempt to improve upon this with more sophisticated imitation learning

algorithms that permit the learned parser to ask for advice from the expert in situa-

tions that the expert by itself would not visit. This approach creates new sequences

of actions that extend the training data into regions of search space that better repre-

sent the states that the learned parser is likely to visit in practice, and hence should

improve performance. We take two existing algorithms for comparison (V-DAgger

and LOLS), and find that taking elements of each leads to a hybrid algorithm (DI-

DLO) with higher performance than either of the existing algorithms on the AMR

parsing problem.

Acknowledgements

I would like to thank both my supervisors, Andreas Vlachos and Jason Narad-

owsky, for their time, invaluable insights and helpful review comments. These

frequently stopped me veering too far into the undergrowth. Jason provided the

initial Scala code for V-DAgger and AROW implementations that I proceeded to

mangle. Thanks also to Ian Kirker for his public provision of a LATEX thesis tem-

plate.

All the code for this dissertation is publicly available in two repositories:

• Implementation of the imitation learning algorithms (LOLS, DAgger,

DI-DLO and variants) is at https://github.com/hopshackle/

mr-dagger

• Implementation of the transition-based parser is at https://github.

com/hopshackle/dagger-AMR

https://github.com/hopshackle/mr-dagger
https://github.com/hopshackle/mr-dagger
https://github.com/hopshackle/dagger-AMR
https://github.com/hopshackle/dagger-AMR

Contents

1 Introduction 10

1.1 AMR background . 10

1.2 Previous work on English to AMR translations 14

1.3 Our contribution . 16

2 Background 17

2.1 Previous Work on AMR to English translation 17

2.2 AMR parsing as Structured Prediction 21

2.3 Transition-based parsing . 23

2.4 Imitation Learning background . 26

2.5 Cost-sensitive and confidence-weighted Classification 32

3 Data 36

3.1 Training corpus . 36

3.2 F-Score . 37

4 A novel transition-based graph parsing algorithm for AMR 39

4.1 Fragments . 39

4.2 Pre-processing and initialisation 40

4.3 Action Space . 42

4.4 Features used . 52

4.5 Classifier . 52

4.6 The Expert Policy . 53

4.7 Alignment impacts . 55

Contents 5

4.8 Unseen Lemma replacement . 58

5 Imitation Learning approach 61

5.1 Combinations of LOLS and V-DAgger 61

5.2 Smatch as a non-decomposable loss function 66

6 Experiments 74

6.1 Validation Results . 74

6.2 Final Results . 83

7 Conclusion and Future Work 85

7.1 AMR performance . 86

7.2 Imitation Learning . 88

Bibliography 93

List of Figures

1.1 AMR Graph of Example I . 11

1.2 Dependency Tree for Example I 13

2.1 Example of AMR ‘fragment’ I . 18

2.2 Example of Transitions in Wang et al. algorithm 19

2.3 Example of AMR ‘fragment’ II . 20

4.1 NATO AMR fragment . 40

4.2 AMR example graph II . 41

4.3 Example of NextNode and NextEdge actions 44

4.4 Example of Swap action . 44

4.5 Example of Reattach action . 45

4.6 Example of ReplaceHead action 45

4.7 Example of Insert action . 46

4.8 Example of ReversePolarity action 46

4.9 Example of Reentrance action . 47

4.10 Sample output AMR graph in training showing result of an ‘Insert

Loop’ . 50

4.11 Correct AMR output for NATO/network sentence 56

5.1 Example of constructing an AMR graph for “Estonia” 66

5.2 Alternative example of constructing an AMR graph for “Estonia” . . 67

5.3 Plot of Smatch score against Naive Smatch 72

6.1 Impact of F-Score on Training Set with AROW Regularisation . . . 77

List of Figures 7

6.2 Impact of F-Score on Validation Set with AROW Regularisation . . 77

6.3 Loss Function performance comparison 78

6.4 Algorithm performance comparison 80

6.5 Algorithm performance comparison (Validation data only) 80

6.6 Impact of V-DAgger sample size 81

6.7 Training error by V-DAgger sample size 81

6.8 Impact of β decay on training performance 82

6.9 Impact of β decay on validation performance 82

6.10 Impact of a constant β rate on validation performance 83

List of Tables

2.1 Comparison of previous work on the AMR task 20

2.2 RollIn and RollOut guarantees . 32

3.1 Training and Test data split . 36

4.1 Action Space for the transition-based graph parsing algorithm . . . 43

4.2 Features used . 51

4.3 Accuracy of expert on training set 55

5.1 Comparison of RollIn and RollOut policies by algorithm 64

5.2 Smatch performance with algorithmic changes 70

6.1 Cross-validation results for parameters in simple Imitation Learning 75

6.2 Simple imitation learning results compared with state-of-the-art . . 84

7.1 Concept Identifications Actions in Werling et al. [2015] 87

List of Algorithms

1 Simple Imitation Learning . 25

2 V-DAgger (Vlachos Data Aggregation Algorithm) 29

3 LOLS (Locally Optimal Learning to Search) 31

4 Improved Aligner . 57

5 Batch LOLS (Locally Optimal Learning to Search) 62

6 Generic outline for SEARN, V-DAgger, LOLS 63

7 Smatch calculation of F-Score . 68

Chapter 1

Introduction

In this dissertation we use imitation learning and a transition-based graph-parsing

algorithm to predict the Abstract Meaning Representation (AMR) graph of an input

English language sentence.

In this first chapter we outline the natural language processing background to

the problem of English to AMR translation, previous work on the problem, and

our contributions in terms of novel algorithms for a transition-based parser and the

imitation learning framework used to learn the parser. In Chapter 2 we provide

background detail on transition-based parsing, and on imitation learning algorithms.

Chapter 4 documents our novel adaptations in transition-based parsing, and Chap-

ter 5 does the same for imitation learning algorithms.

Chapter 3 covers the training and test datasets used here and in previous AMR

parsing work; Chapter 6 provides experimental results; and Chapter 7 concludes

and considers future directions.

1.1 AMR background
The Abstract Meaning Representation (AMR) into which we translate English sen-

tences was introduced by Banarescu et al. [2013]. The AMR graph of a sentence

represents part of the underlying semantic information it carries in a standardised

format, stripped of the inherent ambiguities and syntactic idiosyncrasies of human

language. AMR is designed to help create large databases of semantically anno-

tated sentences to be used in statistical machine translation, and does not include

1.1. AMR background 11

all information; most obviously tense information is ignored. Banarescu et al. note

that AMR remains an improvement over many previous semantic representation

formalisms, which have focused on specific elements such as named entity identifi-

cation or labelling of semantic roles (for example the Conference on Computational

Natural Language shared task of 2009 [Hajič et al., 2009]), and less on whole-

sentence representation. Figure 1.1 shows an example of an AMR graph.

Figure 1.1: AMR Graph of the sentence “The center will bolster NATO’s defenses against
cyber attacks”.

Reduction of a sentence in natural language to a standardised machine-

interpretable form that contains the semantic meaning enables a suite of applica-

tions. For example Vlachos and Clark [2014] use a domain-specific meaning rep-

resentation language (MRL) to automatically respond to requests by tourists in Ed-

1.1. AMR background 12

inburgh looking for directions to hotels, restaurants and sites of interest. In this

example the domain-specificity of the MRL reduces the vocabulary and semantic

structures to be learned, which makes learning easier, but also restricts the results

to the tourism domain. Similar issues apply to ATIS for air-travel bookings [Dahl

et al., 1994] and GeoQuery for database queries [Zelle and Mooney, 1996]. The

ambition of AMR is that it is not domain-specific and applies to any expression in

the English language [Banarescu et al., 2013].

‘AMR’ is also used in a general sense to refer to any abstract system of seman-

tic notation; an Abstract Meaning Representation, rather than the specific version

developed in Banarescu et al. [2013]. See for example Langkilde and Knight [1998]

and Dorr et al. [1998]. For the purposes of this dissertation, AMR always refers to

the specific version of Banarescu et al. [2013]. There are other broad-based Sem-

Bank initiatives with similar goals to AMR, such as the Groningen Meaning Bank

[Basile et al., 2012], UCCA [Abend and Rappoport, 2013] and the Semantic Tree-

bank [Butler and Yoshimoto, 2012]. A comparison of these initiatives is outside the

scope of this dissertation.

The linguistic analysis from sentence to AMR can be considered in layers, with

the semantics that represent the actual meaning of the sentence on top. The lowest

level labels each word (or token) in the input text with the part-of-speech (POS)

that it represents. For example in the Penn Treebank nomenclature JJ indicates

that a word is an adjective, NN a singular noun and NNS a plural noun [Marcus

et al., 1993]. A layer up from this constructs syntactical connections between words,

to form a parse-tree of a sentence. Using the Stanford dependency nomenclature

[De Marneffe and Manning, 2008], we have nsubj to indicate a nominal subject,

or dobj for a direct object; and these dependencies represent edges between nodes.

An example of a dependency parse-tree is depicted in Figure 1.2, for the same

sentence as the AMR graph in Figure 1.1.

Lexical databases then provide a dictionary of different meanings of words. In

the example given, ‘bolster’ can (ignoring its possible usage as a noun), have a num-

ber of different meanings depending on context; the WordNet database [De Marn-

1.1. AMR background 13

Figure 1.2: Stanford Dependency Tree of the sentence “The center will bolster NATO’s
defenses against cyber attacks”. The root, or focus, of the sentence is the single
verb, bolster, which has a subject of ‘center’ and a direct object of ‘defenses’.

effe and Manning, 1998] has three:

1. support and strengthen

2. prop up with a pillow or bolster

3. add padding to

The first of these is the one used in our example sentence. To semantically represent

our sentence we need to clearly indicate which meaning of ‘bolster’ is meant, as

well as the fact that it is a verb rather than a noun. The same goes for the other

words, such as ‘center’, with multiple possible meanings. AMR makes use of the

Penn PropBank [Kingsbury and Palmer, 2003] as this dictionary.

In PropBank each distinct meaning of a verb is a FrameSet. This documents

the meaning, and the mandatory and optional arguments that the verb takes. For

example the FrameSet leave-02 has the meaning “give” (in the sense of leaving

money in a will), with ARG0 being the giver, ARG1 the thing given and ARG2

1.2. Previous work on English to AMR translations 14

the beneficiary of the gift [Babko-Malaya]. This is different to the FrameSet of

leave-01 for the more common meaning of departing a location; this has ARG0

as the leaver, ARG1 as the location or entity being left, and no ARG2.

Once we have annotated the sentence to resolve ambiguities in word meanings,

we are ready for the final layer of the semantic parse, in which we seek to encapsu-

late the full meaning of the text. This is not just a matter of replacing the words in

the dependency tree with the appropriate PropBank reference because we also need

to abstract the underlying meaning away from the syntactic form. For example the

sentences, “The supervisor regarded the thesis as a disaster.” and, “The thesis was a

disaster from the supervisor’s point of view.” should have the same semantic graph

as there is little difference in the meaning (for most practical purposes) even though

they have very different syntactic structures.

Figures 1.1 and 1.2 show the AMR graph and dependency tree for the same

sentence. As well as specifying the PropBank FrameSet (bolster-01), with its sub-

ject (ARG0) and object (ARG1) relations identified, the AMR graph has removed

several features. These includes the determinant “The”, the auxiliary verb “will”,

and the possessive “’s”. It has also replaced the noun “defenses” with a PropBank

FrameSet (defend-01), and expanded the single word “NATO” to three nodes, to

represent an abstraction of a military organisation called “NATO”.

1.2 Previous work on English to AMR translations

The first published work on the task was Flanigan et al. [2014] with the JAMR

system that achieved an F-Score metric of 0.58. (The details of the training data

and performance metrics are in Chapter 3.) Flanigan et al. split the task into two

distinct sub-tasks; firstly concept identification and secondly graph creation. The

sub-tasks are learned independently, and exact inference is used to find highest-

scoring maximum spanning connected acyclic graph that contains all the concepts

identified in the first stage.

Parallel work by Wang et al. [2015a] adopted a different strategy based on the

insight that there is significant similarity between the dependency parse-tree of a

1.2. Previous work on English to AMR translations 15

sentence, and the semantic AMR graph. A comparison of Figures 1.2 and 1.1 helps

make this insight clear. Wang et al. [2015a] start from the dependency tree, and

apply a transition-based parsing algorithm that converts this into an AMR graph

by applying a sequence of actions to the starting tree. One key advantage they

cite for this approach is that it enables the initial stage of generating a dependency

tree to be trained using a much larger corpus of data than that for which we have

AMR annotations. For this they use the Stanford NLP Parser v3.3.1 to generate the

dependency trees which is trained on a separate and much larger corpus from the

Wall Street Journal [Manning et al., 2014]. Wang et al. achieved an improvement

over JAMR with an F-Score of 0.63. They were able in July 2015 to increase this to

0.71 by incorporating further features from additional sources, including a semantic

role labeller and co-reference resolver [Wang et al., 2015b].

Wang et al. [2015a] create an expert policy that is run on the training data to

generate a set of ideal trajectories (a sequence of ordered 〈state, action〉 pairs) that

take the input dependency tree and output the AMR graph. The parser (or policy)

is trained from these generated expert trajectories using an averaged Perceptron

[Collins, 2002] and a binary expert loss function that scores the action chosen by the

expert policy as correct, and all other actions as equally incorrect. Each trajectory

is broken down into instances, with one instance per state. Each instance is a 〈state,

actionList, losses〉 triple; actionList contains all possible actions that can be taken

from state, and losses contains the correspondings loss experienced for taking each

action. In the case of Wang et al. [2015a] one of the possible actions will have a

loss of 0 (the one chosen by the expert), and all others will have a loss of 1. These

instances are then used to train the Perceptron that can be used on unseen states

to predict the losses of actions. The learned parser then takes the action with the

lowest predicted loss.

This can be considered as a form of imitation learning, although it is not usu-

ally described as such in the transition-based parsing literature. Imitation learning

has a long history in the field of process and robotic control [Silver et al., 2008,

Schaal, 1999] and requires an expert demonstrator that takes the optimal set of ac-

1.3. Our contribution 16

tions on the training data to generate the (known) gold output on a training set.

The observed trajectories of 〈state, action〉 pairs are then used to train a learned

controller, which learns by imitating the expert. This has also been referred to as

‘inverse reinforcement learning’ [Abbeel and Ng, 2004], since we start with an op-

timal (or at least very good) expert, and seek to learn the action costs/rewards in

an inversion of the usual reinforcement learning paradigm of learning policy from

observed rewards. This is necessary because the expert is only defined on the train-

ing data, and by learning the implicit reward function underlying its behaviour, we

hope to generalise the learned controller to function well with unseen data.

1.3 Our contribution
We follow the general strategy formulated by Wang et al., pre-processing input

sentences to a dependency tree, applying a transition-based algorithm to convert

this tree into an AMR graph, and then training a parser on these trajectories. Our

contribution is three-fold:

1. We use a novel transition-based algorithm to convert from dependency tree to

AMR graph that can Insert new nodes, unlike the original algorithm of Wang

et al. [2015a], and hence generate AMR graphs that they cannot (Chapter 4)

2. We apply existing imitation learning algorithms (V-DAgger, LOLS) to the

problem that explore beyond the trajectories generated by the expert policy

and permit use of a more sophisticated loss functions (Chapter 5)

3. We develop a novel imitation learning algorithm (DI-DLO) and find that it

performs better than either V-Dagger or LOLS on the AMR problem (Chap-

ter 5)

The intuition for the second point is that by incorporating some level of explo-

ration (i.e. error) in the generation of trajectories, the learned parser will observe

the expert recovering from mistakes, which should help it to generalise better. The

detailed background and motivation to this is covered in Section 2.4.

Chapter 2

Background

In this chapter we provide greater detail on previous AMR work (2.1), and general

background in the two distinct areas of transition-based parsing (2.3) and imitation

learning (2.4), outside of the context of the AMR problem.

2.1 Previous Work on AMR to English translation
The first work on the AMR parsing problem in the JAMR system by Flanigan et al.

[2014] had two discrete stages. The first stage of concept identification is imple-

mented using a semi-Markov model with a basic set of features to obtain the best-

scoring set of AMR concepts that align to the words in the input sentence. The

second stage of graph creation then uses a Lagrangian relaxation of the optimisa-

tion problem to find a minimum cost spanning acyclic graph that incorporates the

identified AMR concepts. The AMR concepts considered in the concept identifi-

cation stage are those found in the training data. The one exception to this is that

JAMR uses some hard-coded rules to construct fragments for temporal expressions

and some common named entity structures (e.g. people’s names) identified in un-

seen data. For examples see Figure 2.1.

Flanigan et al. [2014] note that if they manually specify the correct concepts in

the first stage then the second stage gives an F-Score of 0.80, which is comparable

with observed inter-annotator agreement of 0.79-0.83 that provides the effectively

performance ceiling for any machine learning approach. Given that 38% of the

AMR concepts in the validation data set do not exist in the training set, the restric-

2.1. Previous Work on AMR to English translation 18

tion to AMR concepts that exist in the training data is a major problem identified by

the authors.

Figure 2.1: Example fragments that JAMR [Flanigan et al., 2014] would create from the
unseen strings ”John Shawe-Taylor”, and ”20150907” based on a named entity
recognition system applied as a pre-processing step.

This suggests that the major area for improvement is in concept identification

and further work by Werling et al. [2015] focused on the concept identification

stage, while retaining the JAMR graph creation algorithm. This allowed AMR con-

cepts to be used that were not in the training data, in particular using the raw English

word itself as the AMR concept (this would work for ‘center’ in the NATO exam-

ple), or via a dictionary lookup to the most common Penn PropBank FrameSet for

a verb (which could translate ‘attacks’ to attack-01). This increased the overall

F-Score to 0.62.

As the sentence in Figures 1.2 and 1.1 shows, mapping from words to AMR

concepts is not 1:1. “NATO” is mapped to a fragment of three distinct AMR nodes

of military, name and NATO for example. Figure 2.1 has an example of four

AMR concept nodes that from a fragment mapping to the two words “John Shawe-

Taylor”. In the JAMR system it is these AMR ‘fragments’ which are used as the

atomic building blocks rather than single AMR concept nodes directly. Flanigan

et al. [2014] note that about 20% of all AMR fragments used have more than one

node. In Chapter 4 we explain how, and why, we move away from this fragment

approach.

The Wang et al. approach does not split the problem into distinct steps of con-

cept identification followed by graph generation, and their single-stage transition-

2.1. Previous Work on AMR to English translation 19

based algorithm can interleave concept labelling actions with others that mutate the

shape of the graph. This interleaving of steps allows information from graph gener-

ation to affect concept identification, which is not possible in the JAMR approach.

A simple example of successive actions converting part of a dependency tree into

an AMR Graph is shown in Figure 2.2.

Figure 2.2: The five graphs show parts of successive states in a transition-based parse of
a starting dependency tree (on the left). The actions from left to right are to
Delete “The”; Label the “center” node as center; Label the “nsubj” edge as
ARG0; Label the “bolster” node as bolster-01

Wang et al. still require a dictionary of AMR concepts that can be used when a

node or edge is labelled. The concepts that are permitted are those that occur in the

training data, and the same AMR fragments are used as in JAMR. Each fragment

is treated as a composite node with hidden structure that is only unfolded once the

algorithm completes (see Figure 2.3).

The scoring in the concept identification phase of Flanigan et al. [2014] re-

quires an alignment between AMR fragments and words in the training set. This

is not part of the corpus, each entry of which consists of just the raw English text

and the AMR graph. Hence JAMR provides an aligner to pre-process the training

set to provide this information. This aligner is not learned in any way, and uses a

number of heuristic rules, regex expressions, and partial string matches to lemmas1

in WordNet. On a sample of 200 hand-aligned sentences it achieved an F-Score

of 0.90. Wang et al. [2015a] use the JAMR aligner for the training data without
1A lemma is the base form of a word without syntactic modification. For example ‘attack’,

‘attacking’, ‘attacks’, ‘attacked’ all have the same lemma of ‘attack’.

2.1. Previous Work on AMR to English translation 20

Figure 2.3: Three-node fragment on the left is represented by a single composite
node by Wang et al. [2015a]. On termination of the algorithm, the
NATOCompositeNode is replaced with the three-node fragment in the final
AMR graph.

Table 2.1: Comparison of previous work on the AMR task. The last three items were un-
published (and unknown) when this dissertation was started.

Authors AMR-English
alignment

Algorithmic Approach F-Score

Flanigan et al.
[2014]

JAMR Aligner Two stages. Concept identification
with semi-markov model to identify
set of AMR fragments. Followed by
optimisation of constrained graph that
contains all of these.

0.58

Werling et al.
[2015]

JAMR Aligner Same stages as Flanigan et al. [2014],
but with enhancements to concept
identification to use dictionary lookups
and concepts not in the training set

0.62

Wang et al.
[2015a]

JAMR Aligner Single stage using transition-based
parsing algorithm

0.63

Pust et al.
[2015]

Pourdamghani
Aligner

Single stage within framework of
System-Based Machine Translation

0.66

Peng et al.
[2015]

Enhanced
JAMR Aligner

Hyperedge replacement grammar 0.58

Wang et al.
[2015b]

JAMR Aligner Extensions to action space of original
transition-based algorithm, and to fea-
tures used

0.71

2.2. AMR parsing as Structured Prediction 21

modifications.

Separately Pourdamghani et al. [2014] developed a learned English to AMR

aligner using Expectation-Maximisation methods that aligns English words to the

edges of an AMR graph as well as the nodes; however they do not use the same

dataset as Flanigan et al. [2014], nor compare against JAMR to provide a compa-

rable F-Score. The Pourdamghani aligner is used in contemporaneous unpublished

work by Pust et al. [2015] that attains an F-Score of 0.66 using string-to-tree trans-

lation within the framework of Syntax-Based Machine Translation (SBMT). This

treats AMR and English as ‘a language-pair indistinct from any other’, and uses

some semantic features but not the full dependency tree as Wang et al. do. Another

recent approach by Peng et al. [2015] uses Hyperedge Replacement Grammars,

which they find to be especially sensitive to missing or incorrect alignments in the

training data.

2.2 AMR parsing as Structured Prediction

The parsing of English to AMR is an example of structured prediction, in which

we search for the best structured output for a given input. This provides some

theoretical insight, and helps clarify the role imitation learning is expected to play.

Following Daumé III et al. [2009], a structured prediction problem D is defined

as a cost-sensitive classification problem where Y , the output space, has structure:

elements y ∈ Y decompose into variable-length vectors (y1,y2,y3, . . .yT). D is a

distribution over inputs x ∈X and cost vectors c, where |c| is a variable in kT , and

k is the cardinality of yi.

The output, y, that we are predicting in the AMR case is one possibility

amongst the (infinite) space of all possible AMR graphs. We have structure in two

senses. Any AMR graph can be broken down into sub-graph fragments, each with

its own structure; alternatively, if we consider the space of action sequences, we

are predicting a sequence of actions that directly ties in with Daumé’s “decomposi-

tion into variable-length vectors”. From this second perspective the same output y

can be generated by different action sequences, and there may be multiple optimal

2.2. AMR parsing as Structured Prediction 22

vectors (y1,y2,y3, . . .yT).

The objective of a structured prediction problem is to find a function h : X →

Y that minimises J, the expected cost cy of the output y = h(x) given inputs x that

follow a distribution D :

J(D ,h) = E(x∼D)(ch(x)) (2.1)

Classic methods to finding h construct a function F(y|x,θ) that given an input

x and (possibly learned) parameters θ provides a score for any given output y.

This requires an enumeration over all y ∈ Y to find the optimum. This for ex-

ample is solved in HMM or MEMM approaches to labelling a sequence, which

rely for tractability of inference on only short-range label dependencies being mod-

elled in F . Each element yi of Daumé’s output vector is predicted independently

of the others; or more generally with some k-order Markov assumption so that only

yi−k . . .yi−1 influence the prediction of yi. See for example Punyakanok et al. [2004]

for the independent case, or McCallum et al. [2000] for Maximum Entropy Markov

Models that cover the general-order case. These approaches work well if the prob-

lem can naturally be phrased as a bounded sequence of decisions with a chain struc-

ture. This is natural in labelling the part-of-speech tags of words in a sentence, but

less so in the case of graph construction. If the length of action sequences (and

space of possible graph output) is unbounded this angle does not seem attractive.

We explain in Chapter 4 why this is the case for our transition-based parser. For the

JAMR system of Flanigan et al. [2014] that provides the first AMR parsing base-

line results the problem is tractable as the space is bounded in both stages. In stage

one the bound on AMR concepts is provided by the words in the sentence, with no

support for AMR fragments not linked to a specific set of words. In stage two the

bound is the finite set of AMR concepts from stage one.

When exhaustive search is intractable, the standard response is selective search

of the output space using for example, a greedy heuristic, local hill-climbing or

Monte Carlo search [Daumé III et al., 2009]. As Nivre [2003] points out, transition-

based parsing algorithms that process monotonically node by node, and edge by

edge, amount to a highly pruned, near-deterministic search of possible outputs,

2.3. Transition-based parsing 23

where output space is defined by all possible graphs. A more exhaustive search of

this output space would enable better solutions to be found at the cost of (exponen-

tial) increases in running time. Hence transition-based algorithms can be considered

as selective searchers and imitation learning uses an expert policy to direct this se-

lective search to fruitful areas of Y ; the starting points for exploration in training

are provided by the trajectories the expert policy generates.

In the syntactic dependency-parsing literature, a similar distinction has been

made between transition-based parsing techniques and graph-based techniques

[Nivre and McDonald, 2008]. Graph-based techniques use exact inference with

an implicit enumeration over all outputs to find the best-scoring graph directly, usu-

ally by assuming that the score of a graph can be factorised into additive sums from

each arc, or sometimes from factors of pairs of edges [McDonald, 2006]. This has

the advantage that exact inference algorithms can be used to find the highest scoring

graph, but a disadvantage that in order for this to be tractable the factorisation of the

score cannot take into account long-range features. JAMR uses this approach in the

graph construction phase. Transition-based parsing has the advantage that a much

richer feature-set can be used by breaking the model assumption that graph-scoring

factorises at the edge level required for tractability of exact inference, but has the

downside of potential error propagation due to the greedy nature of decisions at

each action step. The parser may greedily take an action at step n that causes issues

at step n+ 100. The issues around error propagation in transition-based parsing

form a major strand of the later discussion.

2.3 Transition-based parsing

Transition-based parsing algorithms have been used extensively in dependency tree

parsing; taking an input sentence of words and generating a tree structure as in

Figure 1.2. This is a very effective method of processing programming languages

during compilation into a functioning program [Aho et al., 1986]. The extension of

this to natural language is hampered by the innate ambiguity of the input. Despite

this issue the approach works well in practise, with the first left-to-right such parser

2.3. Transition-based parsing 24

on English described by Yamada and Matsumoto [2003].

The standard transition-based parsing approach starts with a graph (e.g. all

word-tokens from the input sentence as fully disconnected nodes), and then applies

a sequence of actions until a terminal state is reached. A learned parser will use

an appropriate classifier to make a decision at each stage. Yamada and Matsumoto

[2003] used an SVM , while perceptron-based linear classifiers are popular in more

recent work Collins [2002]. We review classifiers in Section 2.5.

A transition-based parsing algorithm requires three components [Nivre, 2003]:

• a set of actions (including a definition of when an action is permissible based

on the current state)

• a set of features

• a classifier to select the best action at each step based on the features

The classic dependency parsers use either three (LEFT, RIGHT, SHIFT) or four

(LEFT, RIGHT, SHIFT, REDUCE) actions, and are incremental (to use the termi-

nology of Nivre [2003]) in that once an action is taken we cannot revisit previous

steps. It is also monotonic (to use the closely-related terminology of Honnibal et al.

[2013]) in that all later actions must be consistent with the actions taken hitherto.

Training of the parser occurs as outlined in Section 1.3 by applying an oracle to the

training data to construct trajectories of 〈state, action〉 pairs that represent perfect

decisions. These are then used to train the classifier using Algorithm 1.

A number of limitations of the simple parsing approach have been identified in

the literature. A central problem is that each decision is made greedily, and cannot

take account the effect future actions might have on the final output. We might

need to see the impact of the decision on future states and permissible actions to be

able to make a decision between two actions now. An error made by a parse at an

early stage in the process can then propagate, as explained by McDonald and Nivre

[2007]. This problem avoided by graph-based approaches that score on the final

output only. A number of strategies have been used to mitigate this. Goldberg and

2.3. Transition-based parsing 25

Data: data D, expert policy π∗, feature function f
Result: learned classifier C
Initialise E = /0;
for d ∈ D do

Initialise L = /0;
Predict trajectory ω = ŷ1:T using π∗;
for ŷt ∈ ω do

Extract features Φt = f (d, ŷ1:t−1);
y0

t = ŷt ;
y1...

t = all other possible actions;
foreach possible action y j

t 6= y0
t do

L j
t = 1.0;
/* Loss on non-expert actions is 1 */

end
L0

t = 0.0;
/* Loss on expert action is 0 */
Add (Φt ,Lt) to E;

end
end
Train C using full set of experienced data E;

Algorithm 1: Simple Imitation Learning

Elhadad [2010] remove the determinism of the sequence of actions to create easy-

first parsers, which postpone uncertain decisions if possible until more information

is available; but once a decision is taken it is still fixed. This contrasts with the

classic static approach in which we work inflexibly left-to-right along a sentence,

or bottom-to-top up a tree. Zhang and Clark [2008] use beam search through state-

space for each action choice; for each possible action the parser conducts searches

through the exponentially branching set of actions to find a better approximation of

the long-term score of the action.

Goldberg and Nivre [2012, 2013] introduce dynamic experts that are both non-

deterministic in generating a set of best actions in a given state; and complete in that

they will respond from any state, not just those on the perfect trajectory. Hence if

mistakes have been made previously, a complete oracle will still be able to instruct

on what to do next. They refer to this approach as “Learning with exploration”.

During training instead of always taking the expert action to generate a trajectory,

occasionally an exploratory action will be taken according to the output of the cur-

2.4. Imitation Learning background 26

rent learned parser. The trajectory will then continue from this sub-optimal position.

The authors link their work to the general imitation learning literature and note sim-

ilarities between their approach and the DAgger algorithm which we cover in more

detail in section 2.4. It is not standard practice to refer to Algorithm 1 as ‘imita-

tion learning’ in the transition-based parsing field. We do so here to make clear the

natural progression to the later algorithms of Section 2.4.

Honnibal et al. [2013] use a transition-based parser that is non-monotonic, al-

lowing actions that are formally inconsistent with previous actions. When such an

action is taken it also amends the results of previous actions to ensure post-hoc con-

sistency. They find there is a need to favour monotonic steps over non-monotonic

ones when both are equally scored. Otherwise training results in a poor classifier,

because the difference between good and bad actions early in the trajectory cannot

be distinguished, as the bad actions can be fixed later. Despite this ‘undo’ ability, the

algorithm does not increase the overall length of the trajectory, with repair executed

as part of the overriding action. As a result Honnibal’s non-monotonic algorithm

works in linear time like the monotonic algorithms on which it is based [Honnibal

et al., 2013] [Nivre, 2003].

2.4 Imitation Learning background

Daumé III et al. [2009] noted the common ground between robotic/process control

setting and structured prediction such as the parsing algorithms summarised in the

previous section - see also Vlachos [2012]. In both fields there is a common issue

arising from the difference between the actions of the expert policy/demonstrator

being imitated and the actions of the learned policy/controller during test that we

touched on when discussing the work of Goldberg and Nivre [2013] on dynamic

graph-parsing algorithms.

Even when the learned policy acts on the training set, it may not take exactly

the same actions as the expert demonstrator/policy. This will be because the pol-

icy’s feature set is not rich enough to distinguish between two states that the expert

can. Consider a learned policy that takes a single non-optimal action on a training

2.4. Imitation Learning background 27

example and finds itself in a state for which there are no exact training examples

as it has deviated from the expert trajectory. This is not necessarily a problem, and

is no different to the learned policy acting on an unseen test instance for which

there are similarly no exact training examples. The learned policy may generalise

similarly well to off-trajectory states on the training data. However there can be a

deeper problem since the states encountered during training are themselves depen-

dent upon the expert policy, and this training distribution may not be representative

of the states encountered by the learned policy even when executed on the training

data.

For a somewhat contrived example, a shopping robot demonstration that al-

ways buys milk before bread will never encounter states in which there is bread in

the basket, and milk still on the list of required items. This will hinder learning and

generalisation as if a mistake is made in dairy products, this might propagate to later

groceries. The ‘exploratory actions’ in Goldberg and Nivre [2013] would allow this

bread and no milk state to be reached; and the expert could then demonstrate the

corrective action of popping back for a pint.

Ross et al. [2011], Ross and Bagnell [2010] formalise this intuition in with

theoretical results for simple imitation learning using just the expert trajectory data

(Algorithm 1). In this simple case with a cost function bounded on [0,1], we have

J(π)≤ J(π∗)+T 2
ε (2.2)

where J(π) is the loss incurred following policy π (from start state to terminal

state); ε is the expectation of the 0−1 loss using policy π under the distribution of

states encountered using the expert policy π∗; T is the total number of actions taken

in the trajectory. The problem arises because the distribution of states the policy

encounters in test is not that encountered in training - the normal assumption of

i.i.d. over inputs is very far from holding, as the states in any trajectory (the inputs

used in training) are dependent on the policy used. To address this problem we need

to observe a distribution of states during training that are representative of those the

trained policy will encounter in the wild.

2.4. Imitation Learning background 28

A number of algorithms have been outlined in recent literature that do this.

Daumé III et al. [2009] introduced SEARN in 2009, which generates a stochastic

mixture of policies. Ross et al. [2011] introduced DAgger (Dataset Aggregation)

which outputs a deterministic policy that is generally more stable and more accu-

rate than that of SEARN [Vlachos, 2012]. DAgger, SEARN and similar algorithms

allow the learned classifier to influence the states used in training. Sometimes we

take an exploratory step (under the learned classifier’s control) off the expert tra-

jectory, and ask the expert what it would do in this situation. In sample empirical

work, Vlachos and Craven [2012] show a 8.3 F-point gain from SEARN over simple

imitation learning.

2.4.1 V-DAgger

In this dissertation we look in detail at two imitation learning algorithms. The first

of these is V-DAgger, a modification by Vlachos and Craven [2012] of the original

DAgger by Ross et al. [2011].

At each iteration, V-DAgger generates a ‘RollIn’ trajectory ω for each item in

the training set. This uses the expert policy with probability β at each step, and the

currently learned policy with probability (1− β). β starts at 1.0 and decays at a

rate δ so that the expert policy has progressively less and less impact on training.

For each step on this baseline trajectory, all possible actions other than the one

taken are considered, and for each of these a ‘RollOut’ trajectory to a terminal state

is generated using the same process. These RollOut trajectories explore ‘what if’

scenarios and provide the information of the loss incurred for the exploratory action.

Training of the learned policy then takes place using the regret (i.e the difference

between the loss on the exploratory action and the loss on the best action, which

may or may not be the one taken during the RollIn trajectory) as the training loss.

The RollOut trajectories involve step-wise stochastic choice between the expert

and currently learned policies. This means that, especially for long trajectories,

we can obtain very different terminal states and consequent losses depending on

where and how we deviate from the expert. Hence we use Monte Carlo sampling of

multiple RollOut trajectories and take the mean loss across all of these. This is the

2.4. Imitation Learning background 29

Data: data D, expert policy π∗, Loss function F(y), sampleSize, feature
function f , decay rate δ

Result: learned policy π̂N+1
Initialise E = /0;
Initialise π̂1 = π∗,β = 1.0;
for i = 1 to N do

for d ∈ D do
Initialise L = /0;
πi = βπ∗+(1−β)π̂i randomised at each step;
Predict RollIn trajectory ω = ŷ1:T using πi;
for ŷt ∈ ω do

foreach possible action y j
t 6= ŷt do

Extract features Φ
j
t = f (d,y j

t , ŷ1:t−1);
for s = 1 to sampleSize do

es = RollOut trajectory with starting actions ŷ1:t−1,y
j
t

through to a terminal state using πi;
end
Calculate mean loss L j

t = average of F(e1) . . .F(esampleSize);
Calculate regret L j

t = L j
t −F(ω);

end
Add (Φt ,Lt) to E;

end
end
Train π̂i+1 using full set of experienced data E;
β = (1−δ)β ;

end
Algorithm 2: V-DAgger (Vlachos Data Aggregation Algorithm)

purpose of the sampleSize parameter in Algorithm 2. The differences between V-

DAgger and Dagger are that DAgger does not RollOut from each step on the RollIn

trajectory, but uses binary expert loss (as per Wang et al. [2015a]); and DAgger

trains a policy on each iteration over the data and then averages them to give the

final policy (also as per Wang et al. [2015a]).

Ross et al. [2011] prove that using DAgger for N iterations where N is O(uT)

and in the limit N→ ∞, under the same other assumptions as 2.2 then

J(π̂)≤ J(π∗)+uT εN +O(1) for some π̂ ∈ π̂1:N (2.3)

π̂i is the output classifier from the ith V-DAgger iteration; εN is the expectation

2.4. Imitation Learning background 30

of the true loss under the best policy in π̂1:N in hindsight. Given the previously

noted problem of unbounded T in our AMR transition-based parsing algorithm,

this is an attractive theoretical point and improvement on the quadratic loss (in T)

of (2.2) using simple imitation learning2. Provided that they are generated using

the policy being learned (as in V-DAgger), the ‘exploratory actions’ help move the

distribution of training events towards that the learned policy will encounter, and

as training continues the pure expert actions will take a decreasing role through the

decay of β .

Using V-DAgger or similar algorithms for the English to AMR problem pro-

vides two potential benefits over the simple imitation learning approach of Wang

et al. (Algorithm 1). First is the ability to learn from mistakes, correct errors, and

search areas of output space not visited by the expert on the training set. Secondly

Algorithm 1 as written just uses a binary expert loss - the expert’s action is correct,

all other actions are equally wrong. It would also be possible to use a loss func-

tion that can quantify the extent to which the individual action will affect the final

loss; i.e. the loss function would need to be decomposable over all actions in the

trajectory with the total loss calculable by adding up the individual action losses. V-

DAgger does not require a decomposable loss function as it calculates the loss for

each permissible action from a RollOut trajectory to a terminal state. Hence for an

ultimate target metric that is non-decomposable (such as F-Score), these imitation

learning algorithms allow this to be used directly in training.

Vlachos and Clark [2014] use V-DAgger to show a total benefit of 4.8 points of

F-Score from these factors in a domain-specific semantic parsing problem similar

to the AMR case. In this example there is also a lack of alignment in the training

corpus. This is learned as part of the main parser, with actions linking words in the

input to one of the 35 node types - and a completely random ‘expert’ policy is used

for this step; this works precisely because of the benefit from a non-decomposable

loss function. We do not need to know whether any specific action is correct or

2This result is only proved by Ross et al. [2011] for the original DAgger, and has not been
formally extended to V-Dagger. It arises from the decreasing role of the expert policy in trajectory
generation, which is unchanged.

2.4. Imitation Learning background 31

optimal immediately and we take our learning signal from the final impact this has

on the terminal state.

2.4.2 LOLS

As well as V-DAgger, we also look in detail at LOLS (Locally Optimal Learning

to Search) as a recent algorithm from Chang et al. [2015] (see Algorithm 5) . This

was developed for the scenario where the expert policy is not optimal, and we want

to learn how to improve performance beyond the starting policy. To this end LOLS

provides a guarantee of low regret compared to one-step deviations from the learned

policy as well as to deviations from the expert policy.

Data: data D, expert policy π∗, Loss function F(y), feature function f ,
mixing rate β

Result: learned policy π̂

π̂0 = π∗;
for d ∈ D do

Initialise E = /0;
Predict trajectory ω = ŷ1:T using π̂d−1;
for ŷt ∈ ω do

Initialise L = /0;
foreach possible action y j

t 6= ŷt do
Extract features Φ

j
t = f (d,y j

t , ŷ1:t−1);
πRollOut = π∗ with probability β or π̂d−1 otherwise;
e = trajectory with starting actions ŷ1:t−1,y

j
t through to a

terminal state using πRollOut ;
L j

t = F(e)−F(ω);
end
Add (Φt ,Lt) to E;

end
π̂d+1 = Train(π̂d,E) ;
/* Update old learned policy by training with

newly gathered data */
end
π̂ = average of π̂1:D

Algorithm 3: LOLS (Locally Optimal Learning to Search)

LOLS introduces a type of consistency in trajectory generation. We always

use the learned policy to generate the RollIn trajectory, and then either the expert or

the learned policy on the whole of the RollOut, without randomising at each step as

2.5. Cost-sensitive and confidence-weighted Classification 32

V-DAgger does. Chang et al also introduce the terminology of RollIn and RollOut

that we use in this dissertation.

Table 2.2: RollIn and RollOut guarantees

RollOut
RollIn Expert Mixture Learned
Expert Inconsistent Inconsistent Inconsistent
Learned Locally non-optimal Good [LOLS] Reinforcement Learning

Table 2.2 is reproduced from Chang et al. [2015], and summarises the results of

the detailed theoretical analysis in that paper. The LOLS guarantees apply when the

Learned policy is used to RollIn, and a mixture of expert and learned policies used

to RollOut. RollIn with the expert policy is problematic as it leads to an “unrealis-

tically good” distribution of encountered states during training so that the learned

policy never learns to correct for mistakes. Using the learned policy for RollIn and

RollOut reduces to Reinforcement Learning, and we gain no benefit at all from an

expert policy to help direct our search of the trajectory and output spaces.

RollIn with the learned policy, and RollOut with the expert meets the guarantee

of low regret compared to deviations from the expert policy; but only if we use a

mixture of expert and learned policies do we also obtain this guarantee with respect

to the learned policy. If we compare LOLS to V-DAgger we see that V-DAgger also

uses a mixture on the RollOut, but with the mixing occurring at each step rather

than the level of the entire trajectory. V-DAgger similarly uses a mixture on the

RollIn, which is not explicitly analysed by Chang et al. [2015].

2.5 Cost-sensitive and confidence-weighted Classifi-

cation
Once we have a set of trajectories, whether these come from the expert policy,

learned policy, or some combination of the two, the training step must take this

as input to produce a new learned policy. Training instances consisting of 〈state,

actionList, losses〉 triples are generated from the trajectories as discussed in Sec-

tion 1.2. These training instances are used to train a classifier c able to score an

2.5. Cost-sensitive and confidence-weighted Classification 33

action a from a state s, i.e. score = c(s,a). Specifically we generate a set of weights

w that calculate the score as a simple linear predictor score = wT φ(a,s), where φ is

a set of features calculated from s and a. From state s the learned policy then takes

the action a∗ with the highest score.

a∗(s) = argmax
a∈A

(wT
φ(a,s)) (2.4)

The use of Perceptron-style on-line learning has a long history from the orig-

inal work by Rosenblatt [1958], and has become widely used in natural language

processing since it was popularised by Collins [2002]. These methods try to find a

separating hyper-plane between classes of data in feature-space and have advantages

of making very few statistical assumptions about the data and being very efficient

Crammer et al. [2009a]. The central idea is that for each instance of training data,

the scores for each action are calculated using the current w, and if the selected ac-

tion is not the same as the correct (i.e. the observed) action, then w is updated in a

direction to make the correct action more likely. This is repeated for a number of it-

erations over the whole set of instances. It has also been found useful to conduct this

training a number of times, with the order of the training data randomised, and then

average the resultant weight vectors w [Collins, 2002]. This averaging is used in

Wang et al. [2015a], and is also part of the original LOLS algorithm (Algorithm 3).

The original Perceptron algorithm, and many variants derived from it, were

designed for binary classification tasks. In our case we require a multi-class clas-

sifier, with each possible action being a class. We also wish to use cost-sensitive

classification, and not be restricted to a simple zero-one loss. This enables the

training process to distinguish between an incorrect action which is only slightly

sub-optimal (for example with just one node mislabelled in the terminal state), and

one which causes many nodes to be wrong. Intuitively we wish to update w more if

we chose the latter action than had we chosen the former.

Another problem with classic perceptron-style algorithms is that they do not

take into account variations in the frequency with which features are observed. This

is a particular issue in natural language processing (NLP), where a feature that rep-

2.5. Cost-sensitive and confidence-weighted Classification 34

resents a bi-gram of two specific consecutive words (such as “dog” followed by

“ate”) is going to be seen very rarely compared to a feature for two specific con-

secutive parts-of-speech (such as NOUN-VERB). Rare features are often very dis-

criminative between classes in NLP, and we should like to update their weights

significantly more on the rare occasions that they occur and would help predict the

correct action. This is the intuition behind confidence-weighted (or adaptive) al-

gorithms [Crammer et al., 2009a, Shalev-Shwartz et al., 2003] with extensions in

AROW [Crammer et al., 2009b] or AdaGrad [Duchi et al., 2011]. These can be

extended to the multi-class case [Crammer et al., 2013, 2009a, Chiang et al., 2013].

These have adaptive learning rates that take into account the confidence on

specific components of w. Components of w corresponding to rare features will

have a low confidence (and hence high learning rate), while weights for commonly

observed features will be known with higher confidence, and a lower learning rate

will be used when updating them. In AROW this is implemented by maintaining a

Gaussian distribution over w, with mean w and covariance Σ. The objective function

minimised to obtain updated values of w and Σ for one training instance is:

C(wt,Σt) = KL(N (wt,Σt) ‖N (wt−1,Σt−1))+
Loss(wt,φt)

2C
+

φt
T

Σφt

2C
(2.5)

where KL is the Kullback-Leibler divergence and Loss is the Loss function. Min-

imising the first term reduces the movement in w, with changes to components with

higher confidence particularly damped. The second term minimises the actual loss,

introducing cost-sensitivity. Minimising the third term encourages high-confidence

in w, since as Σ→ 0 we have a point distribution. C is the AROW regularisation pa-

rameter, and large values will emphasise the first term, so that we only make small

changes to w at each step. Additionally, Σ is constrained to be a diagonal matrix,

with no covariance between components of w [Crammer et al., 2013, Chiang et al.,

2013].

To encourage a wide margin between the scores for correct and incorrect ac-

tions we can use margin-scaling [Crammer and Singer, 2003, Chiang et al., 2013].

This introduces a component for the margin between the scores of the predicted and

2.5. Cost-sensitive and confidence-weighted Classification 35

correct actions into the loss function. The Loss function we actually use for AROW

in this dissertation is

Loss =
√

l(s,a)+wT
φ(s,a)−wT

φ(s,a∗) (2.6)

where a∗ is the correct action for the training data from state s, a is the action

selected by the classifier and l is the non-negative underlying loss we are trying to

minimise (detailed in Chapter 5). Note that since a∗ ∈ A , the set of all actions,

Loss is also non-negative. The incorporation of margin-scaling means that we may

update w even if the classifier predicted the correct action, but another high-loss

action was too close in score. This uses the ‘Top-1’ AROW variant [Crammer et al.,

2013], by only considering a and a∗, and the square root of the loss is taken from

Crammer et al. [2006], who find this helpful in reducing error for this family of

algorithms.

Chapter 3

Data

3.1 Training corpus
The dataset used is the newswire section of LDC2014T12 [Knight et al., 2014].

This contains sentences of news reporting from a number of sources, predominantly

Agence France Presse1. The data from years 1995-2006 form the training data, with

2007 as the validation set and 2008 as the test set. The data split is summarised in

Table 3.1, and is the same as that used in all previous work on the AMR parsing

task.

Table 3.1: Training and Test data split

Years Role Sentences
1995-2006 Training 3988

2007 Validation 2132
2008 Test 2132

The generation of these sets from the main corpus was achieved using the

scripts provided by Wang et al. [2015a]2. Additionally the first 577, and also the

first 2120, sentences in the full training set were used as ‘Small’ and ‘Medium’

training sets respectively when comparing algorithms and parameter settings. Their

use is made clear in the relevant experimental sections.

1Flanigan et al. [2014], Wang et al. [2015a] use the pre-release version of this dataset
(LDC2013E117). Werling et al. [2015] conducted comparative tests on the two versions, and found
only a very minor increase of 0.1 to 0.2 points of F-score when using the final release (from 0.621
to 0.622 for their system, and 0.591 to 0.593 for an improved JAMR).

2At http://goo.gl/vA32iI

3.2. F-Score 37

3.2 F-Score
The F-Score used is the traditional F1 score; the harmonic mean of the precision

(proportion of output entries that are correct, and exist in the input) and recall (pro-

portion of all correct input entries that also appear in the output)3. If P is the Pre-

cision, R the recall, C the total number of correct entries in the output, O the total

number of entries in the output and I the total number of entries in the input, then:

F1 =
2

1
P + 1

R

(3.1)

Alternatively, using P = C
O and R = C

I gives

F1 =
2C

I +O
(3.2)

In the context of AMR parsing, we use the Smatch score [Cai and Knight,

2013]. The input set consists of all logical statements defined in the gold AMR

graph. For example just considering the nodes for ‘defend-01’ and ‘military’, plus

their connecting arc, we have three statements:

• a – defend-01

• b – military

• a – ARG1 – b

There exists a node, a, with AMR concept ‘defend-01’, and a separate node, b, with

concept ‘military’. There is a relation of ARG1 connecting them in the direction a

to b. This set of statements, taken across the whole graph, is what Smatch uses to

calculate the F-Score. Consider an output graph that is an attempt to recreate the

gold AMR graph and which contains:

• x – defend-01

• y – university

3https://en.wikipedia.org/wiki/F1 score

3.2. F-Score 38

• x – ARG1 – y

• z – thing

• y – mod – z

The maximum F-Score of 0.50 occurs when we have a mapping of a→ x, b→

y, /0→ z. We then have a precision of 0.40, since 2 of the 5 statements in the output

example can be found in the gold graph, and a recall of 0.67, since 2 of the state-

ments in the target can be found in the output. Formally we consider all possible

mappings of nodes in the first graph to nodes in the second graph, and evaluate the

F-Score for each, taking the maximum over all mappings. However this is an NP-

hard problem and would become prohibitive as graph-size grows. The algorithm

specified in Cai and Knight [2013] executes a heuristic search of mapping space,

which is faster and empirically leads to no loss of accuracy compared to brute-force

enumeration. We use the Smatch F-Score calculation for all evaluations in this dis-

sertation, and we discuss the Smatch algorithm in more detail in Section 5.2 where

we consider its use as a Loss function during training.

Chapter 4

A novel transition-based graph

parsing algorithm for AMR

In this chapter we detail the algorithm we use to convert a dependency tree into an

AMR graph. This is based on Wang et al. [2015a], and we make clear the changes

made. We start in Section 4.1 by reviewing the AMR ‘fragment’ approach of Flani-

gan et al. [2014], Wang et al. [2015a], and our motivation for modifying this and

introducing an Insert action as our major innovation over Wang et al. [2015a]. We

then cover the initial pre-processing that takes place to produce the input to the main

algorithm in Section 4.2.

As discussed in Section 2.3 a transition-based parsing algorithm requires three

components: a set of actions (including a definition of when an action is permissible

based on the current state), a set of features, and a classifier to select the best action

at each step based on the features. We cover each of these in turn in the next three

sections.

4.1 Fragments
As detailed in Section 2.1, Flanigan et al. [2014], Wang et al. [2015a] use AMR

fragments as their smallest unit, which may consist of more than one AMR con-

cept. The example in Figure 4.1 shows an example for the fragment that represents

“NATO”, reproduced from Chapter 2. The internal structure to this fragment is

invisible to either algorithm during learning or execution.

4.2. Pre-processing and initialisation 40

Figure 4.1: Three-node fragment on the left is represented by a single composite node by
Flanigan et al. [2014], Wang et al. [2015a]. On termination of the algorithm,
the NATOCompositeNode is replaced with the three-node fragment in the
final output.

We do not use AMR ‘fragments’ as our building blocks, but instead work

at the level of the individual AMR node. In the NATO example, this means that

we do not align the single English word ‘NATO’ to the three node fragment of

NATO-name-military, but simply to the AMR concept NATO. We then learn

to build up the graph, by inserting name and military concepts. We use a novel

parsing algorithm that incorporates an Insert action to do this.

This more granular approach means that we are not as restricted as previous

work to the fragments that existed in the training set, as we should be able to learn to

use just parts of ‘fragments’, and learn the underlying patterns to these. Figure 4.2

is another example, from which we could potentially learn the general situations

in which the university and organization concepts would need to be in-

serted, even if the specific named examples are different. In both the JAMR and

Wang & Xue initial approaches this is not possible, as the “Naif Arab Academy

for Security Sciences”, and “Arab Interior Ministers’ Council” are only available as

self-contained graph fragments, or as fixed rules to generate fragments from com-

mon named entities, with no generalisation of their contents possible.

4.2 Pre-processing and initialisation
While we do not match sequences of words to AMR graph fragments we do un-

dertake some pre-processing on the English sentences, primarily to deal efficiently

4.2. Pre-processing and initialisation 41

Figure 4.2: AMR Graph of the sentence “Naif Arab Academy for Security Sciences is run
by an Arab Interior Ministers’ Council”.

with dates and numbers. The pre-processing steps are:

• Pass the full sentence through the Stanford Dependency Parser to construct

a dependency tree [Manning et al., 2014], including annotation on parts-of-

speech, named entity recognition, lemmas and dependency labels (all used as

Features in Section 4.2). We use v3.3.1 of the Stanford Parser for compara-

bility with Wang et al.

• Any tokens representing punctuation marks are then removed. (During cross-

validation, it was determined that leaving punctuation marks in the starting

dependency tree did not improve performance - see section 6.1.1.)

• Match any month name (‘January’, ‘Jan’, ‘March’ etc.) and replace it with

the month number mm.

• Match any numeric strings of format ddmmyy or dd-mm-yy and change

these to dd mm yyyy to provide a set of three numeric tokens from which

the AMR date-entity structure can be learned.

• Match any number string between ‘one’ and ‘twelve’ and replace it with the

relevant numeric digits.

• Match any string of ‘thousand’, ‘million’ or ‘billion’ immediately preceded

by a number, and replace both word tokens with the numeric amount - e.g. “2

thousand” becomes “2000”.

4.3. Action Space 42

In AMR the convention is that any amount is expressed in digits, regardless of the

form in the text, and this pre-processing enables these amounts to be used directly

in the AMR graph.

We follow Wang et al. [2015a] and initialise the main algorithm with a stack

of the nodes in the dependency tree, with the root node at the bottom of the stack,

and the leaf nodes furthest from the root at the top. This stack is termed σ . A

second stack, β is then initialised with all children of the top node in σ (hence at

initialisation, β will be empty as we always have a leaf node at the top of σ). The

state at any time is described by σ ,β , all previous actions taken, and the current

graph (which starts as the dependency tree). Each action will manipulate the top

nodes in each stack, which we call σ0 and β0 respectively. We reach a terminal state

when σ is empty.

It is important to understand that we take a dependency tree and mutate it into

an AMR graph. At any stage before termination some of the nodes will be labelled

with words from the sentence, and others with AMR concepts. In an extreme case

it is admissible for the algorithm to take no actions and output (as an AMR graph)

the input dependency tree, treating all the words as AMR concepts, and all the

dependency labels on the edges as AMR relations. When the algorithm refers to

edges or nodes they refer to the current state of the graph being manipulated, which

will be a hybrid of a dependency tree and an AMR graph. Unless clearly stated

otherwise, any mentions of edge or node labels can therefore be either from the

dependency tree or the AMR vocabularies.

4.3 Action Space
The actions in the space are summarised in Table 4.1, with details in the following

sections.

4.3.1 NextNode, NextEdge and Delete

NextNode and NextEdge form the core of the algorithm. We progress over all

nodes from the bottom of the tree up, first labelling the outgoing edges with an

AMR relation using NextEdge, and then labelling the node with an AMR concept

4.3. Action Space 43

Table 4.1: Action Space for the transition-based graph parsing algorithm

Action Name Param. Pre-conditions Outcome of action
NextEdge lr β non-empty Set label of edge (σ0,β0) to relation lr. Pop β0.
NextNode lc β empty Set concept of node σ0 to concept lc. Pop σ0,

and re-initialise β .
Swap β non-empty Make β0 parent of σ0 (reverse edge) and its sub-

graph. Pop β0 and insert β0 as σ1.
ReplaceHead β non-empty Pop σ0 and delete it from the graph. Parents of

σ0 become parents of β0. Other children of σ0
become children of β0. Insert β0 at the head of
σ and re-initialise β .

Reattach κ β non-empty Pop β0 and delete edge (σ0,β0), and attach β0
as a child of the node κ . If κ has already been
popped from σ then re-insert it as σ1.

DeleteNode β empty; σ0 is
leaf node

Pop σ0 and delete it from the graph.

Insert lc Insert a new node δ with AMR concept lc as the
parent of σ0, and insert δ into σ .

RevPolarity Inserts a new node δ with AMR concept “-” as
the child of σ0, and label the edge (σ0,δ) with
polarity.

Reentrance κ Phase 2 Insert new edge (σ0,κ). Then apply the best
NextEdge action.

with NextNode before moving to the next node in the σ stack. Figure 4.3 shows an

example of NextNode and NextEdge actions, and these are unchanged from Wang

et al. [2015a]. Each NextNode action is parameterised with lc, the AMR concept to

be used as the label, and each NextEdge action is parameterised with lr, the AMR

relation to be used. We discuss this parameterisation in Section 4.3.5.

Delete removes a leaf node completely from the graph where the word does

not map to any AMR concept. An example is included in Figure 4.3.

4.3.2 Swap, Reattach and ReplaceHead

These actions change the overall structure of the graph, but always retain a tree

structure provided they start from a tree.

• Swap reverses the direction of an edge, so that β0 becomes the parent of σ0

and its sub-graph. An example is shown in Figure 4.4.

4.3. Action Space 44

Figure 4.3: The five graphs show parts of successive states starting from a dependency tree
(on the left). The actions from left to right are to Delete “The”; Label the
“center” node as center with NextNode; Label the “nsubj” edge as ARG0
with NextEdge; Label the “bolster” node as bolster-01 with NextNode

• Reattach takes the sub-graph starting at β0, detaches it from σ0 and moves it

to a new parent κ . An example is shown in Figure 4.5.

• ReplaceHead removes a node from the graph that is not a leaf node (in which

case the Delete action would be used). An example is shown in Figure 4.6.

⇒

Figure 4.4: Example of Swap action for ”...oppose South Korea and Israel”. We need “and”
to be the parent of South Korea and Israel, and Swap moves it to be the parent
of the whole sub-graph.

Unlike Wang et al. we do not parameterise Swap or Reattach actions with

a relation label. We leave that decision to a later NextEdge action. We permit a

Reattach action to use parameter κ equal to any node within a distance of six edges

from σ0, excluding any node in the sub-graph of β0 to avoid disconnecting the

graph and creating loops. This is slightly more than Wang et al. use, and we found

4.3. Action Space 45

⇒

Figure 4.5: Example of Reattach action. This follows on from Figure 4.4, and we Reattach
the “Israel” node to be a direct child of “and”.

⇒

Figure 4.6: Example of ReplaceHead. “in” is not in the final AMR graph, and needs to
be removed. It is not a leaf node, so we use ReplaceHead to merge it into
“London”.

the increase helpful to cope with the larger graphs we have given the avoidance of

‘fragments’ that merge multiple AMR Concept nodes in the parsed graph.

Our ReplaceHead covers two distinct actions in Wang et al. [2015a]; Replace-

Head and Merge. The Merge action merges σ0 and β0 into a composite node, that

keeps all the words represented in the final AMR graph. This is not required in

our approach as we do not have composite nodes and retain a 1:1 mapping between

nodes and AMR concept.

4.3.3 Insert and ReversePolarity

The Insert action inserts a new node as a parent of the current σ0. The action is

parameterised with lc, the AMR concept for the inserted node. When a node is

inserted, we set the lemma equal to the AMR concept, to be used in features for

future actions. An example is shown in Figure 4.7.

Negation in AMR is represented by a concept of “-” and a relation label of

4.3. Action Space 46

⇒

Figure 4.7: Example of Insert. We insert a new node with a label of military to create
the full AMR representation of “NATO”.

polarity, and this often requires a new leaf node to be inserted. JAMR and

Wang et al. resolve this by labelling words like “not” with the AMR “-” concept;

or by converting prefixes of “un-”, or “non-” into distinct word tokens during the

starting dependency tree in pre-processing that can then be labelled. We instead use

the ReversePolarity action to negate a concept. An example is shown in Figure 4.8.

⇒

Figure 4.8: Example of ReversePolarity. Inserting a “-” node indicates that the attack node
is negated.

There are other leaf nodes that would ideally be inserted to obtain the correct

AMR graph from a training sentence, and these cannot be perfectly constructed by

4.3. Action Space 47

us, or by Wang et al. A review of these scenarios shows they are predominantly due

to alignment issues and an example is shown in detail in Section 4.7. Generalising

ReversePolarity to insert any AMR concept as a leaf is a possible extension of the

Action Space for future work.

In follow-up work Wang et al. [2015b] introduce a new ‘Infer’ action that was

not in their original action space, and that is very similar to our Insert action. Infer

inserts an AMR concept node above the current node as Insert does, but is restricted

to nodes that occur outside of AMR ‘fragments’, which continue to be the base

building block. The Wang et al. Infer action would not therefore insert the node in

the NATO example of Figure 4.7 as this is part of an AMR fragment.

4.3.4 Reentrance

Reentrance is the one action that will turn a Tree into a non-Tree graph, and an

example is given in Figure 4.9.

⇒

Figure 4.9: Example of Reentrance. The “police” both want the burglar to be arrested, and
will make the arrest, so it is an argument of both “want” and “arrest”

Unlike Wang et al. we do not consider Reentrance actions at the same time

as the other actions, but have a second pass (“Phase Two”) through the final AMR

graph once the first pass has reached a terminal state. In this second pass we con-

sider each node as σ0 in turn, and each node within a range of four as a possible

κ for which we should insert a new edge (σ0,κ). We do not label the edge in the

same action (another difference to Wang et al.), but immediately follow any Reen-

trance decision with a NextEdge action to label the created arc. This second pass

is implemented primarily to simplify the first pass, during which we can assume

4.3. Action Space 48

that the graph is always a Tree. We also found that Reentrance makes only a small

difference in the final F-Score, and many of the main experiments were run with-

out the second Reentrance phase switched on; this is made clear in the relevant

experimental results.

4.3.5 Parameters used in actions

We differ from Wang et al. in terms of which AMR relations and concepts we

consider as parameters (lc and lr). They use all AMR relations that appear in the

training set, and all AMR concepts that appear in any training set sentence that

contained the same lemma as that of the word represented by σ0. Given our use

of imitation learning algorithms that generate RollOuts for each possible action that

could have been taken at each step of the RollIn trajectory as detailed in Section 2.4,

adopting this label set creates severe time performance issues, as on the full training

set it gives 600+ possible actions for a large proportion of nodes, and about 80

relations that need to be considered for each edge. Trajectory lengths are commonly

in the range 20-140, and the need to explore every possible one of these options at

every step takes a prohibitively long time.

Instead we run the expert policy over the training set as part of pre-processing,

and track for each lemma in the input which AMR concepts the expert used as

labels. This sub-set for each lemma provides the possible set of parameters lc that

will be used for NextNode actions for that lemma. Similarly we track the lemmas

at head and tail of each expert-assigned AMR relation, and compile the possible lr

parameters from all AMR relations used by the expert as the outgoing edge from

any node with the same lemma as σ0, plus the incoming edges to any node with the

same lemma as β0. We also allow an UNKNOWN parameter for lc, which uses the

actual word from the dependency tree node as the AMR concept; this is particularly

helpful in correctly processing new named entities such as people or organizations

not present in the training data.

For the lc parameters on Insert actions, we use all AMR concepts that the expert

inserted above any node in the training set with the same lemma as σ0.

4.3. Action Space 49

4.3.6 Additional action constraints

Transition-based parsing algorithms have classically relied on a fixed length of tra-

jectory T for guarantees on performance, or at least a bounded T . This is the case in

all of Goldberg and Elhadad [2010], Honnibal et al. [2013], Sartorio et al. [2013],

McDonald and Nivre [2007]. A problem in our approach is the existence of ‘Insert’

that can increase the number of nodes, and other actions that revisit previous parts

of the graph. This means that unlike the classic labelling case we do not have a

fixed T for the number of decisions required, and is theoretically unbounded since

the algorithm could Insert nodes ad infinitum. Wang et al. do not have ‘Insert’ in

their original action space, but they still note Wang et al. [2015a] that in the worst-

case their parser is O
(
n2) in the number of nodes; although in practice they observe

near linear time to process an input.

Early experiments indicated a problem with training trajectories never com-

pleting. This stems from the lack of a fixed number (T) of actions, and of any

guarantee that the algorithm will terminate. Two common examples observed in

practice involved ‘Reattach battles’, where a node would be reattached to another

point of the graph, and then reattached back to its origin, which could repeat ad in-

finitum; and ‘Insert loops’, with the constant insertion of new nodes to create chains

of unlimited length. An example of the result of an ‘Insert loop’ is shown in Fig-

ure 4.10, with the chain of inserted person and have-org-role-91 concepts

continuing without cease. In the terminology of Honnibal et al. [2013] we are not

monotonic, and later actions can undo earlier actions.

Wang et al. [2015a] had a similar problem with Swap actions, and inserted a

feature for the number of times a given edge had been Swapped to control this. We

found that while these types of features did mitigate the problem, they did not do so

sufficiently and training iterations failed to finish. The alternative approach adopted

is to use hard constraints to prevent these pathological situations. Specifically:

• A Swap action cannot be applied to a previously Swapped edge

• Once a node has been moved by Reattach, then it cannot be Reattached again

4.3. Action Space 50

Figure 4.10: Sample output AMR graph in training showing result of an ‘Insert Loop’

• An Insert action is only permissible as the first action on a node

• An Insert action is not permissible if it would insert an AMR concept that is

already in use as any of the parent, children, grand-parents or grand-children

of σ0

The last of these restrictions does prevent some correct AMR graphs from being

formed, but in cross-validation (see Section 6.1.1) this improved performance on

the validation set and also prevented training iterations from entering an ’Insert

Loop’ as shown in Figure 4.10.

The original JAMR work of Flanigan et al. [2014] used a linguistically inspired

4.4. Features used 51

Table 4.2: Features considered during cross-validation. Italicised items are additions to
those used by Wang & Xue. All features are zero-one indicator functions.

Type/Context Features
σ0 lemma, dependency label (dl), named entity (ner), part-of-speech

(POS), inserted
σ0’s parent lemma, dependency label (dl), named entity (ner), part-of-speech

(POS), inserted
β0 lemma, dependency label (dl), named entity (ner), part-of-speech

(POS), inserted
κ lemma, dependency label (dl), named entity (ner), part-of-speech

(POS), inserted
(σ0→ β0) (lemma, POS), (lemma, dl), (POS, lemma), (dl, lemma), (ner, ner), (in-

serted, inserted), relation, distance, path, distance-path, lemma-path-
lemma

(β0→ κ0) (lemma, POS), (lemma, dl), (POS, lemma), (dl, lemma), (ner, ner), (in-
serted, inserted), relation, distance, path, distance-path, lemma-path-
lemma

(σ0parent→ σ0) (lemma, POS), (lemma, dl), (POS, lemma), (dl, lemma), (ner, ner), (in-
serted, inserted), relation

Actions If A0 is the previous action and An is last but n action;
A0, A1, A2, A3, A0A1A2, A0A1

Words Word of σ0,β0,κ,σ0’s parent if different to the corresponding lemma
Merged nodes Lemma of all nodes merged into σ0 or β0 by a previous ReplaceHead

action
Deleted Nodes Lemma of all children nodes of this node previously the subject of a

Delete action
Children inserted, lemma, relation, (lemma, relation) of each child of σ0 exclud-

ing β0

constraint that prevented duplication of argument relations, so that no concept could

have two outgoing ARG1 edges for example. We do not have this constraint, but do

only allow actions which preserve acyclicity as JAMR did not (although in practise

they found that cycles did not occur). The JAMR constraint that all AMR concepts

from the concept identification phase are included in a single connected graph is not

relevant to us, as we do not have a separate concept identification phase. We start

with a fully connected graph, and none of the available actions can disconnect it.

4.4. Features used 52

4.4 Features used

The bulk of the features used are exactly as used by Wang et al. as the most directly

comparable work. Additional features added to this set are shown in italicised text

in Table 4.2. The Wang et al. features using length of span (i.e. the number of word

tokens that a given AMR fragment covers) are not used, as this is uniformly one

with our non-fragmental approach. Instead we have features to indicate whether

a node was inserted, which was not possible for Wang et al.’s parsing algorithm.

‘Relation’ refers to the AMR relation used to label an edge in a previous action

- and is distinguished from the dependency label (dl), which only applies to nodes

that were in the original dependency tree from the Stanford parser. The ‘path’ refers

to the sequence of dependency labels traversed to move between the two relevant

nodes in the starting dependency tree, and is not defined when either of the two

end-nodes is the result of an Insert action.

4.5 Classifier

We use an AROW classifier for all our experiments, without averaging of w across

iterations. The impact of different classifiers is not a focus of this dissertation.

Flanigan et al. [2014] use AdaGrad [Duchi et al., 2011] in the JAMR system, which

is a later and potentially more sophisticated development relative to AROW. Wang

et al. [2015a] use the simpler averaged Perceptron [Collins, 2002]. We consistently

use batch generation of trajectories and instance data, despite the fact that LOLS and

DAgger algorithms are on-line algorithms. V-DAgger is a batch version of DAgger,

and we formally present LOLS in batch form in Chapter 5.

We also used ‘Shenanigan’ features as a means of regularisation that have been

found to be useful by one of my supervisors (Jason Naradowsky) in some previous

imitation learning work. These are features that are unique to a training instance

and can never have a value other than zero on any future data. They therefore

cannot provide any useful information when training the classifier. They act as an

additional form of regularisation on top of the AROW regularisation parameter C,

as the training process will assign them part of the credit for any particular action

4.6. The Expert Policy 53

and update their weights, which will then never be used on future data. Consider

the objective function that AROW minimises (2.5). A feature unique to the instance

will never have been encountered previously, and will have a very low confidence

on its coefficient weight. Changing the ‘Shenanigan’ feature by a large amount

will therefore help optimise (2.5) with little change to the KL term compared to

the others that contribute to the decision, and will correspondingly take on a lion’s

share of the update in training. AROW will treat it no differently to the genuine rare

features that provide discriminative power for which the algorithm was designed -

the difference here is that it will never be used again. The net effect is a smaller

update to the weights that do matter than would otherwise be the case, akin to

regularisation.

4.6 The Expert Policy
The expert policy used in training applies a number of heuristics to determine the

next action from a given state. It uses the alignments from the JAMR aligner to

construct a mapping between nodes in the starting dependency tree, and nodes in

the target AMR graph. Any unmapped nodes in the dependency tree will then need

to be deleted by the expert, and any unmapped nodes in the AMR graph will need

to be inserted. The JAMR aligner maps a sequence of words to an AMR graph

fragment, so there is an additional alignment stage local to the expert that maps

individual nodes in the AMR fragment to words in the sequence. This is done

by calculating the Jaro string distance [Jaro, 1989] between each pairing of AMR

concept and word, and then greedily assigning pairs starting with the best match.

The Jaro distance is a number in the range [0,1] that indicates how similar two

strings are, with 1.0 indicating identity.

From any given state, the expert takes an action from the following rules listed

in priority order. In these rules, ‘AMR’ refers to the Gold AMR graph that the expert

is aiming to produce. ‘Current’ refers to the state of the graph during processing.

1. If we are in Phase Two (the Reentrance phase), and there is an edge to the

current node σ0 in the gold AMR graph that is not in the current graph, then

4.6. The Expert Policy 54

use the Reentrance action to insert this edge

2. If the current node, σ0, is mapped to an AMR node, and this AMR node has

an unmapped AMR node as parent, then Insert a new node and map this to

the unmapped parent AMR node

3. If the current node σ0 needs to have a ”-” node inserted to indicate negation,

then apply ReversePolarity

4. If β is empty (i.e. all outgoing edges from σ0 have already been labelled),

and σ0 has a mapping to an AMR node, then label σ0 with the appropriate

concept using NextNode

5. If σ0 is a leaf node and has no mapping to an AMR node, then Delete it

6. If σ0 has no mapping to an AMR node, but β0 does, then apply ReplaceHead

to merge σ0 into β0

7. If both σ0 and β0 map to AMR nodes, and there is an AMR relation σ0→ β0,

then label with the appropriate relation using NextEdge

8. If both σ0 and β0 map to AMR nodes, and there is an AMR relation β0→ σ0

then apply Swap to reverse this relationship

9. If β0 is mapped to an AMR node with a parent that is not mapped to σ0, then

Reattach β0 to the correct node according to the mapping

10. If β is not empty, then apply NextEdge to label the relation using the current

label on the edge (σ0→ β0)]

11. Use NextNode to label the node using an AMR concept equal to the word of

the node

The last two actions ensure an action is always possible and may result in relations

and concepts in the final AMR graph that are not in the AMR vocabulary. For

example an edge might be labelled nsubj from the starting dependency label. This

will simply reduce the final F-Score.

4.7. Alignment impacts 55

Table 4.3 details the performance of the expert policy on the 3,988 instances in

the training set. Even without Reentrance actions, so that we are restricted to Tree

outputs, the expert policy achieves an F-Score of 0.94 using the JAMR aligner. The

Recall of this baseline of 0.90 indicates that the major issue is failing to include all

of the nodes and edges from the gold target. Permitting re-entrant arcs increases this

to 0.92 recall; and using an improved aligner (see Section 4.7) provides a further,

independent 0.02 increase in recall. Finally, lifting the restriction on Reattach so

that it can explore the whole graph instead of only nodes within a distance of six,

increases Precision by 0.01 to effectively a perfect score, and a further 0.01 gain to

Recall. All three of these improvements are independent of each other.

Table 4.3: Accuracy of expert on training set

Conditions F-Score Precision Recall
Baseline - JAMR aligner, no Reentrance
action and limit on Reattach to a distance
of six

0.941 0.985 0.901

Improved Aligner 0.953 0.984 0.923
Reentrance actions included 0.960 0.986 0.920
Reattach distance restriction lifted 0.952 0.996 0.911
Improved Aligner and Reentrance actions 0.963 0.985 0.942
Improved Aligner, Reentrance actions,
and no limit on Reattach distance

0.973 0.996 0.951

These results indicate that our expert, while not perfect, is good enough to train

our parser via imitation learning. This is especially true when we take into account

that we cannot expect to achieve an F-Score of more than about 0.83 on completely

unseen test data; as this is the F-Score between the AMR produced by different

trained human annotators [Banarescu et al., 2013, Cai and Knight, 2013]. Wang

et al. [2015a] report an F-Score of 0.99 on the training data, but do not provide

explicit details on their expert policy.

4.7 Alignment impacts
Figure 4.11 shows an AMR example where the JAMR greedy alignment prevents

the expert policy from producing the correct AMR output. The English sentence

in question is “NATO CONSIDERS cyber attacks a threat to military and civilian

4.7. Alignment impacts 56

computer networks after the Estonian Government was struck by cyber attacks in

2007.” In this case there are two military nodes in the target AMR: one refer-

ring to networks, and one referring to NATO’s type of organisation. The English

sentence only contains the word “military” once, in the context of networks.

Figure 4.11: Gold AMR graph for “NATO CONSIDERS cyber attacks a threat to military
and civilian computer networks after the Estonian Government was struck by
cyber attacks in 2007.” The two military nodes are highlighted as boxes.

The JAMR aligner greedily links “military” in the English sentence to the first

matching AMR concept found in a root-first graph search, which in this case is

(incorrectly) the NATO-context military. As a result the expert Reattaches the

“military” node in the Dependency Tree to be the parent of the “NATO” sub-graph,

rather than the correct action of Inserting a brand new military node as the

parent. With the JAMR aligner we therefore obtain a terminal state that is missing

the leaf military node in Figure 4.11.

4.7. Alignment impacts 57

As well as getting this specific training example wrong, the action of moving a

node half-way across the sentence is unlikely to provide any useful information that

can be generalised to unseen examples. Additionally, as noted in previous work by

Flanigan et al. [2014], Pust et al. [2015], Peng et al. [2015], improving the align-

ments can increase performance. We therefore develop a new improved aligner

(Algorithm 4) by updating the greedy assignment of words to AMR concepts to

take into account their relative positions in the AMR and dependency tree graphs.

Intuitively we expect words that are close together in the dependency tree (repre-

senting syntactic links) to be aligned to concepts that are close together in the AMR

graph (representing semantic links).

Specifically we consider each alignment of dependency tree node (DT) to

AMR node (AMR), and calculate the Jaro string distance between them [Jaro,

1989]. We then consider any pairing with a Jaro distance of at least 0.75. For

an initial pass we assign DT to AMR node mappings greedily by Jaro distance.

This is very similar to the JAMR aligner, which uses a perfect string match, and

then a ‘fuzzy’ match based just on at least the first four characters of the DT word

and AMR concept.

Data: Graphs A,B with nodes a ∈ A, b ∈ B
Result: M a set of mappings (a→ b) between the graphs
Initialise M = greedy mappings based on Jaro distance;
for i = 1 to 3 do

for (a ∈ A,b ∈ B) do
score(a,b) = similarity(a,b|M)

end
Initialise M′ = /0 ;
for score(a,b) in descending order do

if (a→∗) /∈ A and (∗→ b) /∈ B then
M′← (a→ b)

end
end
M←M′

end
Output M

Algorithm 4: Improved Aligner. Graph A is the dependency tree and Graph B
the AMR graph.

After this initial pass we calculate a score for aligning each possible pair of

4.8. Unseen Lemma replacement 58

DT-AMR node based on topological similarity (T S); we take the neighbours of the

DT node, consider their current mappings in the AMR graph, and calculate the

mean distance in the graph (for those neighbours which have such a mapping) to

these AMR nodes from the AMR candidate mapping. We then calculate an overall

similarity for the DT-AMR candidate pairing:

TS(a,b|M) =
1

|neA(a)| ∑
n∈neA(a)

distance(B(n|M),b) (4.1)

where M is the current set of mappings (a→ b) from DT to AMR nodes, B(b|M)

returns the AMR nodes to which x maps in M, neA(a) returns all neighbours of the

node a in DT, and distance(b1,b2) returns the number of edges between nodes b1

and b2 in the AMR graph.

similarity(a,b|M) =

(
1+

10
T S(a,b|M)

)
∗
(

1+10 j(a,b)3
√

d(b)
)

(4.2)

Where j(a,b) is the Jaro distance between AMR concept and DT word, and d(b)

is the number of duplicates of the AMR concept. The left-most bracketed term

encourages AMR-DT mappings that put nodes close together in AMR if they are

close together in the dependency tree, and right-most term encourages close string

matches. The constants in 4.2 were set using experiments on the training set. The d

term was found to be helpful due to a number of sentences with lists of several coun-

tries. When there are six copies of the country concept, but only one Estonia,

then we want the unique concept to be weighted more heavily in scoring.

These changes correct the examples of Figure 4.11, aligning the “military” in

the sentence to the second, leaf, military node in the gold AMR. The impact

this improved aligner has on our results is detailed in Section 6.1.1.

4.8 Unseen Lemma replacement
One of the main identified problems when learning to parse an English sentence

into AMR is the paucity of AMR concepts and English words in the training data.

A learned parser can only learn to predict an AMR concept if it has training data

4.8. Unseen Lemma replacement 59

that includes this as Flanigan et al. [2014] noted in their original work. We partly

address this with the UNKNOWN parameter for NextNode, which uses the actual En-

glish word as the AMR Concept. Werling et al. [2015] use a similar approach, and

extend it to a dictionary lookup to cope with verbs, which are one key area where

the English word will not suffice directly, due to the ‘-nn’ post-fix to indicate the rel-

evant FrameSet (e.g. the AMR concept for ‘leave’ will be of the form leave-01).

We try a variant to investigate whether there may be some information in words

in the validation data that had not been present in the training data. The underlying

idea is that a rare word in the test data, say ‘vacate’, could be replaced with the

word from the training data that is closest to it in meaning - so that ‘vacate’ could be

replaced with ‘leave’, before processing the sentence. This potentially allows some

contextual information to be included by the parser on the basis that sentences with

‘leave’ as the verb in the training data have some structural similarities to a sentence

with ‘vacate’ as the verb. Given the absence of any information at all on ‘vacate’,

our hypothesis is that this should not make matters worse.

We try two separate approaches for this replacement of unseen words. In both

cases we focus on the lemma of the word rather than the word itself, because the

lemma is used in feature calculation while in the final selected feature set the words

are not. After lemmatisation by the Stanford parser in the pre-processing step (see

Section 4.2) we replace any lemma in the test or validation data with the closest

lemma from the training data. We do not change the word itself, so that a NextN-

ode(UNKNOWN) action will still use the original word.

Firstly we use GloVe, which provides vector representations of words based

on word-word co-occurrence training on billions of words taken from Wikipedia

[Pennington et al., 2014], so that words close together in GloVe space should be

close together in meaning and usage patterns. GloVe combines elements of matrix

factorization and the local context window methods used in the original Word2Vec

approach [Mikolov et al., 2013]. We use the lowest (50) dimensional set of GloVe

vectors1, as tests showed no difference in the replacement words selected when

1http://www-nlp.stanford.edu/data/glove.6B.50d.txt.gz

4.8. Unseen Lemma replacement 60

using higher dimensional vectors.

Secondly we use data from the WordNet database [De Marneffe and Manning,

1998]. In this case we look up the missing lemma in WordNet to obtain its SynSets,

each of which is a list of synonyms for a particular word use. We then pick the

most common SynSet, and replace the unseen lemma with any previously seen

lemma in the training data that is also in the SynSet. This second approach replaces

many fewer lemmas in test data, as the WordNet vocabulary is much smaller than

GloVe’s and even lemmas that do exist in WordNet may not have any previously

seen element in their most common SynSet. In contrast GloVe is trained on the

contents of Wikipedia in 2014, and any unseen lemma will always have a seen

lemma that is nearest to it, even if the match is not brilliant. In practise this means

that GloVe replaces the lemmas for a large proportion of named entities, while the

WordNet approach only replaces unseen nouns, verbs and other standard parts of

speech. The results of lemma replacement are reported in Section 6.1.1.

Chapter 5

Imitation Learning approach

5.1 Combinations of LOLS and V-DAgger

5.1.1 LOLS in batch mode

Algorithm 5 documents our implementation of LOLS and is amended slightly to

fit the same pattern as V-DAgger. The changes from the original Algorithm 3 are

batch learning with no averaging of policies, and a decay of β , the probability that

a RollOut trajectory uses the expert policy.

Our key motivator to investigate LOLS as well as V-DAgger for the AMR task

is the switch from step-wise to trajectory-wise stochasticity. Early experiments us-

ing V-DAgger observed that if we took three samples for each RollOut trajectory

from the same starting state and exploratory action, then these could give three very

different terminal states (and hence losses incurred) due to the step-wise stochastic-

ity. This is despite both component policies being deterministic. This gives a high

variance in the loss signal used in training, which early experiments suggested was

harmful to effective learning. Some results are included in Chapter 6.

A potential advantage of LOLS is that each trajectory uses a single determinis-

tic policy, so we do not have this high variance in the loss signal for RollOuts with

the same starting 〈state, action〉. Daumé III et al. [2009] have a similar problem, and

note that an approximate cost function outperforms single Monte Carlo sampling,

“likely due to the noise induced following a single sample”. We may be able to use

LOLS to reduce noise, as an alternative to cranking up the sample size in V-DAgger.

5.1. Combinations of LOLS and V-DAgger 62

Data: data D, expert policy π∗, Loss function F(y), feature function f ,
decay rate δ

Result: learned policy π̂N+1
Initialise E = /0;
Initialise π̂1 = π∗,β = 1.0;
for i = 1 to N do

for d ∈ D do
Initialise L = /0;
Predict trajectory ω = ŷ1:T using π̂i;
for ŷt ∈ ω do

foreach possible action y j
t 6= ŷt do

Extract features Φ
j
t = f (d,y j

t , ŷ1:t−1);
πRollOut = π∗ with probability β or π̂i otherwise;
e = trajectory with starting actions ŷ1:t−1,y

j
t through to a

terminal state using πRollOut ;
L j

t = F(e)−F(ω);
end
Add (Φt ,Lt) to E;

end
end
Train π̂i+1 using full set of experienced data E;
β = (1−δ)β ;

end
Algorithm 5: Batch LOLS (Locally Optimal Learning to Search)

5.1.2 Combinations

Algorithm 6 is constructed to highlight the aspects shared between SEARN, DAgger

and LOLS. When generating the trajectories on the training data that will be used

for training the learned parser, each of the following need to be specified:

• the policy used to generate the RollIn trajectory (the RollInPolicy)

• the policy used to generate RollOut trajectories from each step on the RollIn

trajectory, for each possible action that could have been taken at that step (the

RollOutPolicy)

• rules for changing β at each iteration (parameter used to determine impact of

expert policy)

5.1. Combinations of LOLS and V-DAgger 63

Data: data D, expert policy π∗, Loss function F(y), sampleSize
Result: learned classifier C
Initialise C = /0;
for n = 1 to N do

Initialise En = φ ;
πRollin = RollInPolicy(π∗,C,n);
πRollout = RollOutPolicy(π∗,C,n);
for d ∈ D do

Initialise L = /0;
Predict trajectory ω = ŷ1:T using πRollin;
for ŷt ∈ ω do

foreach possible action y j
t do

Extract features Φ
j
t = f (d,y j

t , ŷ1:t−1);
for s = 1 to sampleSize do

Predict outward trajectory ût+1:T using πRollout ;
L j

t = F(ûT);
end

end
LowestCost = minL j

t ;
foreach j do

Regret j
t = L j

t −LowestCost
end
Add (Φt ,Regrett) to E;

end
end
Train C using experienced data E1 . . .En;
C = Train(C,E1 . . .En);

end
Algorithm 6: Generic outline for SEARN, V-DAgger, LOLS

• which RollOut data are fed into the classification learning algorithm to gen-

erate a learned policy (part of the Train function)

LOLS uses a single policy for each RollOut trajectory - either the learned

parser, or the expert. If these two give very different results, then very different

losses from very similar starting states will be included in the trajectory data used

for training. This will happen if an exploratory step takes the learned parser into an

unseen state from which it makes very sub-optimal decisions, which then propagate

as suggested by Ross et al. [2011] (2.2) and result in a very high final loss. The

expert policy in contrast will take the best action to get back to the target, and give

5.1. Combinations of LOLS and V-DAgger 64

Table 5.1: Comparison of RollIn and RollOut policies by algorithm

Algorithm RollIn RollOut Train
Simple
Imitation
Learning

Use the expert policy
only

RollOut is not required,
as we use the expert bi-
nary loss function.

Use all the data from
the first (and only)
iteration.

SEARN At each step use cur-
rent trained policy with
probability γ , previous
trained policy with prob-
ability γ(1 − γ) . . . etc.,
with residual probability
for expert policy

As RollIn Use the data from
the current run only
to generate a new
current trained pol-
icy

V-DAgger At each step with prob-
ability β use the expert
policy, and with probabil-
ity 1− β use the current
trained policy

As RollIn Use all the data from
all previous itera-
tions to train the cur-
rent policy

LOLS Use the current trained
policy only (the expert
policy in the first itera-
tion)

With probability β use
the expert policy for all
steps, otherwise use the
current trained policy for
all steps

Use all the data from
all previous itera-
tions to train the cur-
rent policy

DetLOLS As LOLS Execute one trajectory
using the expert only,
and one using the trained
classifier only. Then take
the weighted average of
the two Losses - expert
Loss weighted by β and
trained by 1−β)

Use all the data from
all previous itera-
tions to train the cur-
rent policy

DI-LO As DAgger As LOLS As LOLS
DI-DLO As Dagger As DetLOLS As LOLS
LI-DO As LOLS As DAgger As LOLS

5.1. Combinations of LOLS and V-DAgger 65

a relatively low final loss for a single-step error. This could give a high variance in

loss signal as observed with V-DAgger.

In initial experiments with LOLS, this large discrepancy between expert and

learned parser losses was found still to be an issue, especially on large AMR graphs.

To reduce this variance in the calculated loss we introduce DetLOLS (Deterministic

LOLS) as a simple tweak to LOLS. What DetLOLS does is generate every RollOut

trajectory twice; once for the expert, and once for the learned parser. It then takes

a weighted average of the two losses using the β parameter to weight the result

towards the expert early in training, and reduce this weighting as training proceeds.

We also mix-and-match the RollIn and RollOut policies to form hybrid algo-

rithms. Specifically we try DAgger RollIn combined with LOLS RollOut (giving

DI-LO), and LOLS RollIn combined with DAgger RollOut (giving LI-DO). Com-

bining V-DAgger RollIn with DetLOLS RollOut in the same way gives a DI-DLO

composite algorithm. The differences between all these algorithms are summarised

in Table 5.1 and Algorithm 6 implements all of them. Experimental results compar-

ing all these variations are in Section 5.1.

5.1.3 Expert policy updates

With all these algorithms the expert needs to make decisions based on any state,

including those where previous actions might have been taken by a learned policy.

This was not required in the simple imitation learning of Algorithm 1, as we never

ventured off the expert trajectory. In the terminology of Goldberg and Nivre [2012]

our expert must be complete.

This is achieved by updating the mapping between current graph and the target

AMR after each action regardless of whether the action was taken by the expert or

not; this then provides the data the expert needs on a later step to make a decision.

The only mapping update that is required is after an Insert action, and the newly

inserted node is mapped to any unmapped target AMR node with the same concept

that is also a parent of σ0. If no such node exists, then the newly inserted node is

left unmapped.

5.2. Smatch as a non-decomposable loss function 66

5.2 Smatch as a non-decomposable loss function
To apply V-DAgger, or any approach that fits the pattern of Algorithm 6 to the AMR

problem, we need a loss function that can be calculated for any terminal state. This

is in contrast to the simple imitation learning of Algorithm 1, which uses a binary

expert loss function - a loss of 0.0 for the exact action taken by the expert, and a

loss of 1.0 for any other action. In this case of binary expert loss, we do not need to

unroll each possible action to a terminal state.

A downside of binary expert loss is that we cannot distinguish between non-

expert actions with different terminal states; some mistakes may cause much less

harm than others to the end result, and there may be multiple equally valid actions

leading to different paths to the same correct answer. For example, starting from

the word ’Estonia’ in the dependency tree, the expert policy will first insert a new

name node, then label the leaf node as Estonia, then insert a country node

above the previously inserted name node. However it would be equally correct to

insert country first, and then immediately insert name before labelling the leaf

node as Estonia. Binary expert loss will mark insertion of country as incorrect,

even though were we to unroll to a terminal state this action could give the correct

answer. See Figures 5.1 and 5.2.

⇒ ⇒

Figure 5.1: Example of Insertion of nodes starting from the word “Estonia” to obtain the
AMR country representation

Another disadvantage of binary expert loss is that it is difficult to learn to be

better than the expert policy, as the expert policy also defines the loss function used

during training. Using a loss function independent of the expert would allow us to

5.2. Smatch as a non-decomposable loss function 67

⇒ ⇒

Figure 5.2: Alternative processing of “Estonia” to the same AMR representation

learn actions that are better than the expert’s suggestion for a given state. This may

not be a problem if the expert is optimal (or close to), but for sub-optimal experts

this will provide an upper limit on the success we can achieve.

Calculating (1.0−F-Score) for the terminal state is the obvious loss function

to use, as the F-Score is exactly what we are trying to maximise. However this is

NP-hard to calculate, with complexity exponential in the size of the input graphs

as discussed in Section 3.2. The heuristic short-cuts of the Smatch algorithm of

Cai and Knight [2013] partially get around this, and Smatch is perfectly adequate

for approximating the final F-Score on the test and validation sets once training is

complete.

However we encounter difficulties when we use Smatch directly as the training

loss function. A RollIn trajectory is of the order of 100 steps to get to a 30-node

AMR graph, and for each step we have up to 20 actions (once we have reduced

the size of the permissible actions as discussed in Section 4.3). For each of these

we have to generate a RollOut trajectory to a terminal state. Hence processing one

training sentence can require 2000 or more Smatch calculations. This is half the

size of the full training set, which takes about 16 minutes to process via Smatch

on a single core (see Table 5.2). The full training set would therefore take of the

order of 32,000 minutes for one training iteration just to calculate the loss function

results, or 20 to 25 core-days. This performance rapidly worsens when a trajectory

leads to large graphs, such as the pathological example shown in Figure 4.10; or

if we need to take multiple samples to reduce variance in the estimated loss. As a

5.2. Smatch as a non-decomposable loss function 68

result it is necessary to find a faster loss function than Smatch for training.

The original Smatch algorithm of Cai and Knight [2013] is shown as Algo-

rithm 7. The central idea is that we start with a reasonable initial match of nodes

between the two AMR graphs by aligning greedily nodes that have the same con-

cept. We link other nodes in this initial mapping randomly. We then consider all one

move changes to M (see Algorithm 7 for possibleMoves), and calculate the F-Score

improvement of each such change. We greedily select the best move, apply this to

M to obtain an improved candidate mapping and iterate until there is no improve-

ment in F-Score. Given the stochastic nature of the initial assignment, we repeat

a number of times with different initialisations. Four iterations is the number that

Cai and Knight [2013] settle on as providing near-perfect accuracy on their datasets

compared to using brute-force enumeration of all possible mappings.

Data: AMR Graphs A and B; wlog A is the larger of the two graphs
Result: F-Score F of best mapping of nodes between A and B
for i← 1 to 4 do

Initialise Mapping M as set of pairings a→ b between nodes in A and
B. We link nodes based on greedy alignment for exact matches on
labels, and then randomly link remaining nodes;
repeat

possibleMoves = all possible swaps in M: (a1→ b1), (a2→ b2)
⇒ (a1→ b2), (a2→ b1) ;
possibleMoves = possibleMoves + all possible assignments of
unmapped nodes in A to a node in B: (a1→ φ), (a2→ b)⇒
(a1→ b), (a2→ φ) ;
for move ∈ possibleMoves do

Calculate improvement in F-Score of M+m (see Section 3.2);
end
m = move with best improvement in F-Score ;
Update M with m ;

until m does not increase F-Score;
F(i) = F-Score of M ;

end
F = maximum of all F(i) ;

Algorithm 7: Smatch calculation of F-Score

We can modify the heuristics to reduce the amount of exploration undertaken

in various ways. A first change we can consider is to only look at N of the total

possibleMoves, picked randomly, and then stop if none of these increase the score.

5.2. Smatch as a non-decomposable loss function 69

Secondly, the calculation of F-Score for every possible move only to pick one of

them seems wasteful, so we try a greedier policy of applying a move m as soon as

we find one that improves the score, and break the repeat loop early, in a process

of satisficing.

A third change is to improve the initial mapping to take account of topological

information. We adopt an approach similar to that for our improved AMR to English

aligner in Section 4.7 with the same Algorithm 4, except that in the first pass use

the Smatch initialisation. In further iterations we amend this based on the string

similarity between node labels, and a measure of their topological similarity (TS).

This gives us different functions for TS(a,b|M) and similarity(a,b|M), listed below.

For a potential pair mapping (a→ b) in the context of a previous full mapping M,

we define TS as the count of the neighbours of a in graph A that map to neighbours

of b in graph B. If neA(x) is a function returning the neighbours of node x in graph

A, and B(x) is a function returning the node in graph B that maps to x in graph A,

then

T S(a,b|M) = |B(neA(a)) ∩ neB(b)| (5.1)

In each subsequent iteration, we consider every possible pairing (a→ b) and score

each using:

similarity(a,b|M) = (1.0+T S(a,b|M))∗
(

1.0+5
δ (a,b)
2c(a)−1

)
(5.2)

where δ (a,b) is 1 if the labels of a and b are identical and 0 otherwise, and c(a) is

the count of the duplicates of the label of a across both graphs. We then greedily

add pairings with the highest similarity scores to form a new mapping M′. Once a

node from either graph has been included, we ignore any lower-scored pairings that

include it. The constants and form of (5.2) were determined from experiments on

the training set.

The results of these amendments to the vanilla Smatch algorithm are in Ta-

ble 5.2. Smatch was run on all 3,988 instances of the Training Set, comparing

the gold AMR with that generated by running the expert policy of Section 4.6 on

5.2. Smatch as a non-decomposable loss function 70

Table 5.2: Smatch performance with algorithmic changes

Algorithm Iter F-Score Time taken
Vanilla Smatch 4 0.965 16.7 min
+ satisficing 4 0.965 6.5 min
+ improved initialisation 4 0.963 11.4 min
+ N = 1000 4 0.965 11.5 min
+ all three of above 4 0.963 8.8 min
Vanilla Smatch 1 0.960 4.1 min
+ satisficing 1 0.959 1.7 min
+ improved initialisation 1 0.963 2.8 min
+ N = 1000 1 0.958 2.9 min
+ all three of above 1 0.962 2.2 min
Naive Smatch - - 0.5 sec

the English sentence. Vanilla Smatch provides the highest accuracy score we can

hope to achieve, as this conducts the most complete search of possible mappings to

find the one that maximises F-Score. Accuracy of the algorithmic changes is hence

measured in the drop of F-Score compared to vanilla Smatch.

Both the satisficing and reduced search of possible moves (via N) improve

performance (by a factor of 2.5 for satisficing) without any loss of accuracy when we

use four random initialisations. The improved initialisation method also provides

a performance improvement despite the increased overhead, presumably because

less search is required from a more accurate starting mapping. However it is the

only one of the three changes that reduces the accuracy on the full training set from

0.965 to 0.963, because the starting mapping is deterministic and stops exploration

of the full space of possibilities. We can see this as when using just a single iteration

the improved initialisation sees no drop in accuracy compared to multiple random

starts, while vanilla Smatch and the other tweaks all do.

As a result of these changes, we can obtain a performance improvement of

about 8-fold over the standard Smatch, with relatively little loss of accuracy. This is

helpful, but we can improve matters much more if we use an approximation to the

Smatch, which we term ‘Naive Smatch’.

5.2. Smatch as a non-decomposable loss function 71

5.2.1 Naive Smatch

Even with these improvements, Smatch is still very slow if it is to be run to evalu-

ate every possible RollOut at every step of every RollIn trajectory. We try ‘Naive

Smatch’ as an approximation to Smatch evaluations during training. This skips

the mapping of nodes in graph A to nodes in Graph B. Instead for each graph we

compile a list of:

• Node labels, e.g. name

• Node-Edge-Node label concatenations, e.g. leave-01:ARG-0:room

We then calculate precision, recall and F-Scores between the two lists directly. Pre-

cision being the proportion of list entries in graph A (the actual output) that can be

found in the list for graph B (the target output); Recall being the complement; and

F-Score being the harmonic mean of the two (see Section 3.2).

This is lightning-fast relative to the full Smatch calculation as it avoids the

combinatorics, taking just 0.5 seconds versus the 16 minutes of vanilla Smatch (see

Table 5.2)1. This is an improvement of 2,000-fold, and shifts the performance bot-

tleneck from loss function calculation to generation of RollOut trajectories.

To confirm that Naive Smatch is a reasonable approximation, we trained a

parser on the Small Training set, and ran this on the full validation set of 2,132

sentences. We calculated Smatch and Naive Smatch scores for the output AMR

graphs against the gold AMR, and obtained a positive correlation of 0.97 between

Smatch and Naive Smatch scores. The result is shown graphically in Figure 5.3.

If the only labelling problems occur in the names given to edges, then both

Smatch and Naive Smatch will give the same result, as both will treat an incorrectly

labelled edge as a single mistake. When there are mistakes in a node label Smatch

will count this as a single mistake, while Naive Smatch counts an additional error for

each edge into or out of the mislabelled node. This accounts for the main structure

visible in Figure 5.3. The line of perfect correspondence consists of graphs which

only have edges mislabelled, with the majority of points below this line due to the
1No F-Score is provided for Naive Smatch in Table 5.2, as this is not comparable to vanilla

Smatch as is the case for the other variants

5.2. Smatch as a non-decomposable loss function 72

Figure 5.3: Plot of Smatch score against Naive Smatch after parsing the full validation set
with a learned parser. Jitter has been added for clarity.

over-counting of node label mistakes by Naive Smatch. The few points where Naive

Smatch gives a greater result than Smatch are for graphs with many identically

named nodes, such as with a list of countries, for which Naive Smatch will match

nodes with the same name, even if topologically dissimilar.

5.2.2 Absolute Smatch

A further potential problem is that Smatch (and Naive Smatch) provides a loss in the

range [0,1], regardless of the size of the AMR graphs being compared. The training

corpus contains graphs of widely varying sizes, from four nodes up to around 50;

and correspondingly wide variations in the lengths of trajectories, T . This means

that the loss is not scaled to the length of the trajectory, and the number of actions

that contribute to it. For example a single mislabelled node in a graph of four nodes

will give a much higher Smatch loss than a single mislabelling in a graph of 50.

The action that mislabels the node is equally wrong in both cases, but using Smatch

directly will ascribe a much lower loss to the mistake that takes place in the larger

graph.

5.2. Smatch as a non-decomposable loss function 73

To control for this effect, we use an absolute Smatch loss measure that is sim-

ply the number of mistakes made, without scaling to the [0,1] range. We count the

incorrect entries in the output graph (once converted to triples as discussed in Sec-

tion 3.2), plus the entries in the input graph (once converted to triples) that are not

in the output. This number is proportional to the size of the graph.

5.2.3 Penalty Smatch

Smatch and Naive Smatch as discussed so far do not take account of T , the length

of the trajectory, but just the accuracy of the final terminal state. Hence a trajec-

tory with T = 10 is just as correct as one with T = 100 if they reach the same

terminal state. In practise we would prefer the first of these as a more frugal use of

resources. This is a particular issue due to the lack of any guarantees of termination,

and for mistakes to be corrected by later actions. For example ‘Reattach Battles’

(Section 4.3.6) can increase T arbitrarily while reaching the same terminal state.

In early testing there were examples of this happening, with Smatch or Naive

Smatch giving equal losses to RollOuts from many different exploratory actions,

as any mistakes could be repaired later to give the same terminal state. Hence we

introduce a penalty to the Smatch loss for taking each action. This is implemented

simply as:

Penalty Smatch = Absolute Smatch− T
5

(5.3)

The coefficient of 1
5 was selected after experiments on the training set.

Chapter 6

Experiments

This chapter is split into two sections. In Section 6.1 we provide the results of

experiments using the training and validation sets to determine the features and

parameters to use in the final runs. In all cases we test various settings by training

parsers on the training set, and evaluating the result using the performance of the

trained parser on the unseen validation set. In Section 6.2 we then use the optimal

settings as determined by these validation experiments in final experiments using

the full training and validation sets for training, and the previously unseen test set

to give a final F-Score. Details of the Small, Medium and Full training sets, and of

the validation and test sets are in Chapter 3.

6.1 Validation Results

6.1.1 Feature and Parameter validation

We used the Medium training set and full validation set to determine the sets of

parameters to use in Algorithm 1, using an AROW classifier and binary expert loss.

The parameters we considered were the inclusion of the various sets of features in

Table 4.2, the use of the improved aligner of Section 4.7, the AROW regularisation

parameter C (see Section 6.1.2), the inclusion of the optional Insert prohibition of

Section 4.3.6, the inclusion of punctuation tokens (commas, semi-colons, brackets

etc.) in the dependency tree and the replacement of unseen lemmas in the test set

(Section 4.8). All of these results were obtained without the Reentrance action.

‘F-Train’ is the percentage F-Score that the trained parser obtains on the train-

6.1. Validation Results 75

Table 6.1: Cross-validation results for parameters in simple Imitation Learning

Parameter settings F-Train F-Val
Baseline - improved aligner, base features, C = 1.0 90.2 62.3
+ Shenanigan Features -0.2 +2.9
C = 100 -0.6 +2.3
+ Action Features +0.2 +2.2
JAMR Aligner -3.3 +2.1
+ Insert Prohibition -1.7 +1.9
+ Child Features -0.2 +1.3
+ Delete Features -0.3 +0.7
+ Punctuation tokens -1.3 +0.4
- Word features -0.9 +0.1
GloVe Lemma replacement 0.0 -1.8
GloVe Lemma replacement (II) 0.0 0.0
WordNet Lemma replacement 0.0 0.0
+ Shenanigans, C = 100 -1.7 +3.6
+ Deletion + Punctuation -0.7 0.0

ing data used, and ’F-Val’ is the percentage F-Score it obtains on the unseen vali-

dation set. For clarity, the impact of parameter settings are shown as the change in

F with respect to the baseline. The baseline features used are those in the first eight

lines of Table 4.2, and the table is sorted in descending order of beneficial impact

on the validation score.

The regularisation effect of the ‘Shenanigan’ features is at least partly inde-

pendent of that from the smoothing parameter C, as their combination shows. The

alignment changes made do improve performance on the training data relative to

the JAMR aligner, but worsen it on the validation data. The reason for this is not

clear, but for all future experiments the default JAMR aligner was used. We ex-

pected punctuation tokens to provide some additional useful information, but the

effect is small. Since they also increase the size of the starting dependency tree and

the length of parsing trajectories, they were not included in our final settings. Word

features have little effect, and were dropped from the final runs.

The final set of parameters selected from these results were: JAMR aligner,

Insert Prohibition, Action, Child, Shenanigan and Delete Features with C = 100.

The attempt to extract some information from lemmas in the validation data

that had not been present in the training data using a GloVe lookup to find the

6.1. Validation Results 76

closest match did not help, and resulted in a large drop in performance. This is

due to the high proportion of organisation and individual names in the training/test

corpus. For example, the unseen word ‘Israel’ was replaced with ‘Syria’, as the

closest match from the training data. However this led the trained parser to use the

label ‘Israel’ as the AMR concept, when otherwise it would default correctly to the

word itself (using the UNKNOWN parameterisation for the NextNode action). One

modification was made to the expert policy and action space to counter this, with the

expert amended to preferentially use the UNKNOWN parameterisation if the English

word was a perfect match for the AMR concept. The results after this change are

shown as “GloVe Lemma Replacement (II)” in Table 6.1 - and while avoiding the

previous problem, do not provide any benefit.

6.1.2 AROW Parameters

Figures 6.1 and 6.2 show the effect of changing the AROW regularisation parameter

on a full V-DAgger run, with decay parameter β = 0.10, and 10 training iterations

for each V-DAgger iteration. Each line represents the F-Score the trained parser

achieves after the nth iteration on the training set and validation sets respectively.

The lighter the line, the heavier the smoothing. We naturally expect the performance

on the training set to be higher, and the regularisation effect should reduce perfor-

mance here as it increases. Assuming that we have a sufficiently rich set of features

we expect the performance on the validation set to be low for small C due to over-

fitting to the training set, improve to an optimum level as regularisation increases,

and then decline beyond this.

As the data show, a regularisation parameter of 10 or greater is required to

improve performance by the learned parser on the unseen validation set. Regulari-

sation up to at least 105 still gives good results, but gives starkly worse performance

on the training set as expected. We choose C = 100 as our selected parameter, as

there is no clear improvement for higher values.

6.1. Validation Results 77

Figure 6.1: Impact of F-Score on Training Set with AROW Regularisation parameter. The
line for Train-n represents C = 10n.

Figure 6.2: Impact of F-Score on Validation Set with AROW Regularisation parameter.
The line for Val-n represents C = 10n.

6.1. Validation Results 78

6.1.3 Loss function comparison

Figure 6.3 shows results on DI-DLO runs using Naive Smatch, Naive Absolute

Smatch, and Naive Absolute Penalty Smatch (see Section 5.2). A decay rate of 0.03

was used, and all parameters and features according to the results of Section 6.1.1.

There is little difference between Naive Smatch, and Naive Absolute Smatch apart

Figure 6.3: Comparison of Loss Functions (Naive Smatch, Naive Absolute Smatch, and
Naive Ansolute Penalty Smatch) with DI-DLO. F-Score evaluated on full vali-
dation set.

from the first iteration, when the Absolute version is better. Including the penalty

term gives a large increase in performance, and Naive Absolute Penalty Smatch is

used as the training loss function for all other experiments. The full Smatch of Cai

and Knight [2013] is used to calculate the final F-Scores; Naive Smatch is only used

during training.

6.1.4 Algorithm choice: combinations of V-DAgger and LOLS

We compared V-DAgger, LOLS and the variant algorithms documents in Table 5.1.

These experiments were all run over 6 iterations using the Small training set, a

decay parameter of δ = 0.02, and evaluated on the full validation set. Parameter

settings, other than ones specific to the imitation learning algorithm, were those

selected from validation using simple imitation learning in Section 6.1.1 with the

exception that Shenanigan features were not used. DI-DLO provides the best results

as shown in Figures 6.4 and 6.5. We therefore use DI-DLO for the final run.

Note that the three algorithms (LI-DO, LOLS, DetLOLS) that use the LOLS

6.1. Validation Results 79

RollIn approach (learned parser from previous iteration only with no expert involve-

ment) all perform worse in the second iteration than the three that use the V-DAgger

RollIn (which takes 98% of the steps using the expert policy and just 2% using the

learned policy). LOLS RollIn has the capacity to venture much further from the

expert trajectory, and will explore distant parts of output space that provide less

useful information about states commonly encountered by the next iteration of the

learned parser. Where the training signal improves the performance on the Training

Set (i.e. DetLOLS), this drop-off in performance is temporary while for the others it

does not recover. A conclusion is that for DetLOLS the RollIn trajectories improve,

exploring less unproductive output space. As to why only DetLOLS achieves this,

we suggest the cause is reduced variance in the loss signal. Less noise means better

training.

Early experiments using V-DAgger had shown that we needed to keep β high

to obtain any benefit from imitation learning. Since DI-DLO is our final selected

algorithm, we repeated experiments to explore the impact of β levels using DI-

DLO. These are reported in Section 6.1.5.

6.1.4.1 V-DAgger variance

In general we note in Figures 6.4 and 6.5 that the algorithms with lower variance

of loss on the RollOut do better. To test this hypothesis we ran comparisons using

V-DAgger with increasing sample size of RollOut trajectories for each exploratory

action. The parameter settings and data used are otherwise the same as in Sec-

tion 6.1.4. The only change in this set of experiments is the increase in sample size;

the higher the sample size, the lower the variance expected in the loss signal.

As Figure 6.6 shows, the higher the sample size, the better the performance

of the trained parser. We also plot in Figure 6.7 the error rate during training of

the AROW classifier at the end of five iterations; i.e. the percentage of training

instances for which the incorrect action is predicted. This indicates the reduction in

noise levels for greater sample sizes.

6.1. Validation Results 80

Figure 6.4: Comparison of Algorithm combinations, with F-Score on y-axis and number
of iterations on x-axis. This shows performance of the trained parser on the
training data (T) and the unseen validation data (V)

Figure 6.5: Comparison of Algorithm combinations, with F-Score on y-axis and number
of iterations on x-axis. This shows performance of the trained parser on the
unseen validation data only

6.1. Validation Results 81

Figure 6.6: Effect of V-DAgger sample size on F-Score (y-axis) by number of iterations on
x-axis. This shows performance of the trained parser on the training data

Figure 6.7: Effect of V-DAgger sample size on training error after five iterations.

6.1.5 Selecting β and δ rates

To select the decay parameter for β used in DI-DLO we ran validation experiments

on the Small training set using the same parameters as in Section 6.1.4. The com-

plete validation set was used, and the results for varying the rate of decay of β are

shown in Figures 6.8 and 6.9.

For any decay rate of more than about 0.05, the performance of the learned

classifier drops off rapidly on both the training and validation sets and that we need

to keep the expert heavily weighted in our RollIn and RollOut trajectories. A decay

rate of δ = 0.02 provides the optimum, but these results are from only a single

6.1. Validation Results 82

Figure 6.8: Six iterations, with learned classifier run over training set after each to give
F-Score for varying decay rates.

Figure 6.9: Six iterations, with learned classifier run over validation set after each to give
F-Score for varying decay rates.

6.2. Final Results 83

run of each setting. It is also clear that at least some decay of β is necessary as if

we continue to use the expert policy the whole time (the “No Decay” series), then

we never make any progress from the performance of the first iteration. Setting a

small β between about 0.02 and 0.05 gives a clear improvement over this baseline

for approximately 2-5 iterations before performance declines, and this is not due to

using too few AROW training iterations given the improvement over zero decay.

We also experimented with a constant value of β beyond the first iteration, and

the results are shown in Figure 6.10. There is not much difference between them,

with all reaching a peak score on the validation set of about 0.56, albeit at different

points. Again we conclude that some use of the learned classifier is essential; but

not very much.

Figure 6.10: Six iterations of DI-DLO, with learned classifier run over validation set after
each to give F-Score for varying constant rates of β and no decay.

6.2 Final Results

6.2.1 Simple Imitation Learning

We used the full training plus validation sets to train a parser, and tested this on the

previously unused test data set. This gives a final F-Score of 0.68, and a comparison

to previous work is shown in Table 6.2. Five final runs were executed with different

6.2. Final Results 84

random seeds, and all gave the same result to two significant figures. While we

surpass all previously published and other known work prior to July 2015, we do

not achieve the same performance as Wang et al. [2015b].

Table 6.2: Simple imitation learning results compared with state-of-the-art

Author F-Score on test Precision Recall
Flanigan et al. [2014] (JAMR) 0.58 0.66 0.52
Werling et al. [2015] 0.62 0.66 0.59
Wang et al. [2015a] 0.63 0.64 0.62
Pust et al. [2015] 0.66 - -
Peng et al. [2015] 0.58 0.59 0.57
Wang et al. [2015b] 0.71 0.72 0.69
This dissertation 0.68 0.71 0.66

6.2.2 DI-DLO

We ran one full run using the full training set using DI-DLO, a decay rate of 0.03,

and all other parameters and settings as in Section 6.1.4. Evaluation used the full

validation set. This gave a peak in the Validation F-Score on the 3rd iteration. We

therefore ran three iterations of DI-DLO with the same settings on a combination

of the full training and validation sets. Applying the resultant learned policy to the

unseen test set gave an F-Score of 0.63. We also tested the result of the first iteration,

which gave an F-Score of 0.60, 8-points short of the result with one iteration of

simple imitation learning in Section 6.2.1.

Chapter 7

Conclusion and Future Work

The main conclusion from the results in Table 6.2 is that by using a novel transition-

based algorithm that incorporates an Insert action we are able to surpass all previous

results for English to AMR translation prior to Wang et al. [2015b]. This gain comes

at the expense of trajectory lengths T that are technically unbounded, and measures

to prevent T exploding during training (see Section 4.3.6) are required. This is

in line with the observations of Honnibal et al. [2013] that non-monotonic repair

actions need to have an additional cost during training, otherwise the later repair

facility means that all actions are equal earlier in the trajectory. This unbounded T

also necessitates a loss function that applies a penalty per action taken. We consider

future work aimed at increasing the F-Score beyond the 0.71 achieved by Wang et

al. in Section 7.1.

Unfortunately the benefits we anticipated from more sophisticated imitation

learning algorithms to explore beyond the simple expert trajectories fail to improve

upon the result of simple imitation learning using binary expert loss. Theoreti-

cally we expected improvements both from the reduction in error propagation to

avoid O
(
T 2) losses on test data (Equations 2.2 and 2.3), and from the use of a non-

decomposable loss function (Naive Smatch) that considers the ultimate loss of an

action, taking into account future actions to mitigate local greediness. From the re-

sults in Sections 6.1.4 and 6.1.5 we see that performance does increase over the first

few iterations for some V-DAgger-based algorithms provided that the β parameter

is high enough. The problem is that it never reaches the level that simple imitation

7.1. AMR performance 86

learning achieves without exploration. This suggests that reduction in error prop-

agation is providing a benefit, but that using a non-decomposable loss function is

not working as anticipated. We consider some possible reasons for this, and future

work to investigate these, in Section 7.2.

7.1 AMR performance
The advance of 8-points of F-Score between Wang et al. [2015a] and Wang et al.

[2015b] is broken down by the authors as:

• 2 points from using a different parser to construct the dependency tree (the

Charniak parser [Charniak and Johnson, 2005] instead of the Stanford one)

• 4 points from the addition of the Infer action (see Section 4.3.3)

• 2 points from use of additional semantic label features that utilise knowledge

of the FrameSets in the underlying PropBank [Palmer et al., 2005, Kingsbury

and Palmer, 2003]

We expect our Insert action to provide at least as much benefit as Infer, as it defines a

strict super-set of graph transformations. Using the Charniak parser and augmenting

the feature set to include semantic labels might therefore provide a similar boost to

the final result if applied to our algorithm.

Werling et al. [2015] use JAMR for the graph creation phase, with a modifi-

cation to initial concept identification. They retain the mapping of AMR fragment

to a span of text, but learn a classifier that takes an input sentence and returns a set

of AMR concept mappings that can include concepts not in the training set. While

this is very different to our transition-based algorithm, they both address the same

underlying problem of fragility of a memorized mapping based on a small training

set - 38% of the concepts in the validation set do not occur in the training set, and

cannot ever be generated by simple memorisation [Werling et al., 2015].

For each span of words they have a vocabulary of 9 action types, as listed in

Table 7.1, alongside the percentage of total tokens that are processed with the ac-

tion type in the JAMR aligned training data. As the table makes clear, the action

7.1. AMR performance 87

Table 7.1: Concept Identifications Actions in Werling et al. [2015] The Percentage is the
proportion of total concepts in the training set that were matched by each Action.

Action %age Description Our Equivalent
NONE 36.2 Word token is ignored, and not

mapped to any AMR concept
Delete and ReplaceHead
actions

DICT 26.1 JAMR lookup is used - i.e AMR
graph fragment from training set
aligned to the same set of word to-
kens

NextNode and NextEdge
actions, which only use
concepts from the training
set

IDENTITY 16.6 Use the word token itself as the
AMR concept

NextNode action with a
parameter of UNKNOWN

VERB 10.2 Find the nearest verb (by Jaro-
Winkler distance) in PropBank
[Kingsbury and Palmer, 2003] that
provides AMR with its FrameSets,
and then select the most frequently
used sense (e.g. left to leave-01)

No equivalent

LEMMA 4.5 Use the lemma of the word token as
the AMR concept directly

No equivalent if Lemma is
different to Word

NAME 3.9 Construct an AMR fragment by at-
taching a name node as the parent
to the span

Insert action

DATE 1.1 Convert the span into an AMR
date-entity fragment

Pre-processing step splits
date fields, and then In-
sert permits construction
of date-entity

PERSON 1.1 Insert person and name nodes
above the span

Insert action

VALUE 0.1 Convert text to its integer value Pre-processing numeric
string conversion

space of our parsing algorithm covers all the concept identification actions of Wer-

ling et al. [2015], with the exception of LEMMA and VERB, and incorporation

of knowledge of the PropBank FrameSets to augment the possible vocabulary of

NextNode actions is an area of future extension we could apply to our work. This

is likely to have some overlap with the 2-point gain in F-Score from using semantic

label features derived from the PropBank found by Wang et al. [2015b].

Our attempt to improve the initial alignment between English words and AMR

concepts in Section 4.7 does the opposite of what it was intended to, and reduces

performance on validation data (Table 6.1). This contrasts with the work of Pour-

7.2. Imitation Learning 88

damghani et al. [2014]. It would be interesting to investigate this, and determine

what causes the problem. Another approach would be to drop the alignment step

completely, and learn it from the data. This is the approach of Vlachos and Clark

[2014] to semantic parsing, albeit in the context of a much smaller vocabulary of

concepts to be learned with a restricted action (i.e. vocabulary) space of 35 node

types and 32 argument types; compared to approximately 6000 node concepts and

80 relations in the AMR training corpus.

7.2 Imitation Learning

7.2.1 State Distribution in training

More sophisticated imitation learning algorithms have not helped performance de-

spite our theoretical hopes; and are also more time-consuming given the need to

generate RollOuts for each possible action from each step of the RollIn trajectory.

If we look at Figure 6.4 we see that variants of V-DAgger and LOLS can im-

prove performance over a few iterations, but that this benefit is much more pro-

nounced when measured on the training set. This supports the underlying the-

ory that exploring off-trajectory states and asking the expert for advice from these

newly explored states does improve performance. The theoretical benefit of the ex-

ploratory versions of imitation learning comes from a training distribution of states

that is more representative of the distribution the parser will experience in practice

than the distribution of states the expert policy visits. In the case of the training set

the gap between these two distributions is being bridged. The parser trained by the

expert alone often deviated from the expert trajectory, and additional training data

using input from the expert policy in these situations does improve the final result.

There is some benefit on the validation data, but to nothing like the same ex-

tent as Figure 6.4 shows. We speculate that the state distribution from the training

data is highly dissimilar to that experienced on unseen data, reducing the value

of the exploration. Considering the space of all possible trajectories for English

sentences, the training set creates islands of closely clustered examples, with one

cluster (roughly) per sentence. The validation sentences form their own set of data

7.2. Imitation Learning 89

points, not necessarily ‘close’ to the training examples.

The additional trajectories provided by the exploratory moves during RollIn

do provide information that can be generalised, but focus on a narrow penumbra

of space around the training sentences; so it is unsurprising that performance im-

proves for these. The more distant validation sentences benefit less from this extra

information because the gap between the observed distribution of states in training

and the observed distribution of states experienced on the validation data remains

high. We should recall that in the context of natural language, we have a very small

training set of 4,000 sentences (6,000 including the validation set) and that many

words and AMR concepts appear a handful of times, or just once. If we had AMR-

labelled data of the size of the Wikipedia corpus used to train GloVe or the Stanford

Dependency Parser, then we might expect this issue to be ameliorated. We could

investigate this hypothesis by looking at the relative performance on test sentences

with respect to the proportion of word and AMR concepts they contain that were

not in the training set. Test sentences containing only words that are common in the

training set should be ‘near’ the trajectories gathered in training, and accuracy on

these should be much better.

7.2.2 Variance in loss signal

This argument about the relative paucity of training data applies equally well to

the simple imitation learning approach using binary expert loss. The experimental

results in Figure 6.4 for different algorithms suggest that the higher the variance in

the loss calculated for different RollOuts from the same starting 〈state, action〉, the

worse is the performance. DI-DLO is much better than V-DAgger, and DetLOLS

is much better than LOLS. Between both these pairs the main difference is the shift

from stochastic to deterministic calculation of RollOut trajectories and final loss.

Removing this noise reduces variance in the loss signal and improves performance.

This conclusion is reinforced by the results from varying the V-DAgger sample size

in Figure 6.6, where it is the only variable changed and improves performance as it

increases, and reduces variance in the loss signal.

While DI-DLO and DetLOLS cut down on the variance observed for a given

7.2. Imitation Learning 90

classifier, each iteration trains a new classifier, which will give different trajectories

from the same state. Since the full set of training data includes trajectories from

all previous iterations (and hence different classifiers), variance/noise levels will

increase with iterations. We speculate that this might be a contributory factor in

the fall-off in performance as the number of iterations increases, with training data

originating from an ever growing number of policies. Experiments that use just the

trajectory data from the most recent iteration of imitation learning might improve

on this.

7.2.3 Expert optimality

The second point from these results is that we benefit from staying close to the ex-

pert trajectory. LOLS and LI-DO that use the learned parser to RollIn perform less

well than DAgger and DI-DLO, which use expert actions for the vast majority of

RollIn steps (given the high values of β used). This contrasts with other researchers

who frequently report that low β values are helpful. Ross et al. [2011] find β = 0

after the first run often provides the best results (δ = 1.0), and Vlachos and Clark

[2014] use a decay rate of δ = 0.3 for optimal results. We find completely the

opposite and have to keep β > 0.95 for any benefit.

It is possible that with a less good expert, we might see more of an impact.

We should recall that LOLS was designed for situations in which the expert is quite

poor (Section 2.4.2), and this may not be an ideal choice for the AMR task. The

potential to improve on the expert is limited given how good it is (see Table 4.3);

and any benefit from this is swamped by the variance in the training signal inherent

to the long roll-out trajectories before a terminal state is reached. In contrast, the

simple imitation learning approach with binary expert loss has a crystal-clear train-

ing signal, and this lack of variance appears to provide more than enough benefit

to outweigh the theoretical problems of an unrealistic distribution of states during

training and the lack of a non-decomposable loss function to take account of future

actions. The first iteration with any of the algorithms of Section 5.1 only uses the

expert policy for RollIn and RollOut, and hence is the same as simple imitation

learning except that the binary expert loss function is replaced with Naive Smatch.

7.2. Imitation Learning 91

From Section 6.2, the first iteration of DI-DLO with the full training set gives an F-

Score of 0.60 when evaluated on the test set, compared to 0.68 for simple imitation

learning. This 8-point drop must be due to the change in loss function, and supports

the hypothesis.

We did run some experiments using binary expert loss with DI-DLO (and the

other algorithms of Section 5.1), but these showed no benefit - there was usually a

very small improvement on training set performance, and always a deterioration in

performance on the validation set.

7.2.4 Future Work

From this discussion we believe that the imitation learning algorithms of Chapter 5

provide advantages from an improved distribution of training states (seen in this

dissertation), and a non-decomposable loss function (not seen in this dissertation

due to high variance in the loss signal). The initial focus of future work should be

to address this variance problem. Three possible options to be investigated are:

• to use partial RollOuts at each step, say for M steps, so that there is less

opportunity for major deviations to take place on a long trajectory. The loss

could then be calculated against the graph generated by the expert policy

after M steps. This would mean the loss was no longer fully independent of

the expert, but the gain in reduced variance could be worthwhile, especially

given the quality of our expert. This is the approach of focused costing from

Vlachos and Craven [2011].

• modify the algorithms of Section 5.1 to use only the expert policy in the

RollOuts, while retaining the learned policy during RollIns. Similarly we

could use the original DAgger of Ross et al. [2011] which does not RollOut

at all, but uses binary expert loss with step-wise stochastic RollIn trajectories.

This might gain some of the benefit of improved state distribution with binary

expert loss.

• start training just using small AMR graphs, in analogy with layer-wise train-

ing methods used in Neural Networks [Knerr et al., 1990, Bengio et al., 2007].

7.2. Imitation Learning 92

It might help to train a parser to work efficiently on small elements of graph

sub-structure before putting together the larger elements. The smaller the

graph, the less room there is for single-steps to lead to a large difference in

the final terminal state and so we expect the variance problem to be reduced

for these given their shorter trajectories. Feasibly we could train an initial

parser on small sentences, or sentence-fragments, and learn common action

sequences that could be included as a single meta-action when we look at

longer sentences. This would reduce the trajectory length, and potentially the

noise of the training signal.

Additionally it is worth investigating the theoretical implications of our

LOLS/V-DAgger hybrids, given the theoretical bounds that exist for both. This

could help us understand the general sorts of problems for which they are most

suited.

Bibliography

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement

learning. In Proceedings of the twenty-first international conference on Machine

learning, page 1. ACM, 2004.

Omri Abend and Ari Rappoport. Ucca: A semantics-based grammatical annotation

scheme. In Proc. IWCS, 2013.

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, Principles, Tech-

niques. Addison wesley, 1986.

Olga Babko-Malaya. Guidelines for propbank framers. Unpublished man-

ual, http://verbs.colorado.edu/ mpalmer/projects/ace/FramingGuidelines.pdf.

URL http://verbs.colorado.edu/˜mpalmer/projects/ace/

FramingGuidelines.pdf.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf

Hermjakob, Kevin Knight, Phillip Koehn, Martha Palmer, and Nathan Schneider.

Abstract Meaning Representation for Sembanking. Proceedings of the 7th Lin-

gustic Annotation Workshop & Interoperability with Discourse, pages 178–186,

2013.

Valerio Basile, Johan Bos, Kilian Evang, and Noortje Venhuizen. Developing a

large semantically annotated corpus. In LREC, volume 12, pages 3196–3200,

2012.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy

http://verbs.colorado.edu/~mpalmer/projects/ace/FramingGuidelines.pdf
http://verbs.colorado.edu/~mpalmer/projects/ace/FramingGuidelines.pdf

BIBLIOGRAPHY 94

layer-wise training of deep networks. Advances in neural information processing

systems, 19:153, 2007.

Alistair Butler and Kei Yoshimoto. Banking meaning representations from tree-

banks. Linguistic Issues in Language Technology, 7(1), 2012.

Shu Cai and Kevin Knight. Smatch: an evaluation metric for semantic feature

structures. In ACL (2), pages 748–752, 2013.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, and John

Langford. Learning to search better than your teacher. 32, 2015.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent dis-

criminative reranking. In Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics, pages 173–180. Association for Computational

Linguistics, 2005.

David Chiang, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann, Bevan Jones,

and Kevin Knight. Parsing graphs with hyperedge replacement grammars. In

ACL (1), pages 924–932, 2013.

Michael Collins. Discriminative training methods for hidden markov models: The-

ory and experiments with perceptron algorithms. In Proceedings of the ACL-

02 conference on Empirical methods in natural language processing-Volume 10,

pages 1–8. Association for Computational Linguistics, 2002.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multi-

class problems. The Journal of Machine Learning Research, 3:951–991, 2003.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram

Singer. Online passive-aggressive algorithms. The Journal of Machine Learn-

ing Research, 7:551–585, 2006.

Koby Crammer, Mark Dredze, and Alex Kulesza. Multi-class confidence weighted

algorithms. In Proceedings of the 2009 Conference on Empirical Methods in

BIBLIOGRAPHY 95

Natural Language Processing: Volume 2-Volume 2, pages 496–504. Association

for Computational Linguistics, 2009a.

Koby Crammer, Alex Kulesza, and Mark Dredze. Adaptive regularization of weight

vectors. In Advances in neural information processing systems, pages 414–422,

2009b.

Koby Crammer, Alex Kulesza, and Mark Dredze. Adaptive regularization of weight

vectors. Mach Learn, 91:155–187, 2013.

Deborah A Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-

Smith, David Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth Shriberg.

Expanding the scope of the atis task: The atis-3 corpus. In Proceedings of the

workshop on Human Language Technology, pages 43–48. Association for Com-

putational Linguistics, 1994.

Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured predic-

tion. Machine learning, 75(3):297–325, 2009.

Marie-Catherine De Marneffe and Christopher D Manning. WordNet: An Electronic

Lexical Database. MIT Press, 1998.

Marie-Catherine De Marneffe and Christopher D Manning. Stanford typed depen-

dencies manual. Technical report, Technical report, Stanford University, 2008.

Bonnie Dorr, Nizar Habash, and David Traum. A thematic hierarchy for efficient

generation from lexical-conceptual structure. Springer, 1998.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. The Journal of Machine Learning

Research, 12:2121–2159, 2011.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A Smith.

A discriminative graph-based parser for the abstract meaning representation,

2014.

BIBLIOGRAPHY 96

Yoav Goldberg and Michael Elhadad. An efficient algorithm for easy-first non-

directional dependency parsing. In Human Language Technologies: The 2010

Annual Conference of the North American Chapter of the Association for Compu-

tational Linguistics, pages 742–750. Association for Computational Linguistics,

2010.

Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager dependency

parsing. In COLING, pages 959–976, 2012.

Yoav Goldberg and Joakim Nivre. Training deterministic parsers with non-

deterministic oracles. Transactions of the association for Computational Lin-

guistics, 1:403–414, 2013.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara,

Maria Antònia Martı́, Lluı́s Màrquez, Adam Meyers, Joakim Nivre, Sebastian

Padó, Jan Štěpánek, et al. The conll-2009 shared task: Syntactic and semantic

dependencies in multiple languages. In Proceedings of the Thirteenth Confer-

ence on Computational Natural Language Learning: Shared Task, pages 1–18.

Association for Computational Linguistics, 2009.

Matthew Honnibal, Yoav Goldberg, and Mark Johnson. A non-monotonic arc-eager

transition system for dependency parsing. In Proceedings of the Seventeenth Con-

ference on Computational Natural Language Learning, pages 163–172. Citeseer,

2013.

Matthew A Jaro. Advances in record-linkage methodology as applied to matching

the 1985 census of tampa, florida. Journal of the American Statistical Associa-

tion, 84(406):414–420, 1989.

Paul Kingsbury and Martha Palmer. Propbank: The next level of treebank. In Proc.

Workshop Treebanks and Lexical Theories. Citeseer, 2003.

Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Single-layer learning revisited:

a stepwise procedure for building and training a neural network. In Neurocom-

puting, pages 41–50. Springer, 1990.

BIBLIOGRAPHY 97

Kevin Knight, Laura Baranescu, Claire Bonial, Madalina Georgescu, Kira Griffitt,

Ulf Hermjakob, Daniel Marcu, Martha Palmer, and Nathan Schneider. Abstract

meaning representation (amr) annotation release 1.0. Linguistic Data Consortium

Catalog. LDC2014T12, 2014.

Irene Langkilde and Kevin Knight. Generation that exploits corpus-based statis-

tical knowledge. In Proceedings of the 17th international conference on Com-

putational linguistics-Volume 1, pages 704–710. Association for Computational

Linguistics, 1998.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.

Bethard, and David McClosky. The Stanford CoreNLP natural language pro-

cessing toolkit. In Proceedings of 52nd Annual Meeting of the Association for

Computational Linguistics: System Demonstrations, pages 55–60, 2014. URL

http://www.aclweb.org/anthology/P/P14/P14-5010.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a

large annotated corpus of english: The penn treebank. Computational linguistics,

19(2):313–330, 1993.

Andrew McCallum, Dayne Freitag, and Fernando CN Pereira. Maximum entropy

markov models for information extraction and segmentation. In ICML, vol-

ume 17, pages 591–598, 2000.

Ryan McDonald. Discriminative learning and spanning tree algorithms for depen-

dency parsing. PhD thesis, University of Pennsylvania, 2006.

Ryan T McDonald and Joakim Nivre. Characterizing the errors of data-driven de-

pendency parsing models. In EMNLP-CoNLL, pages 122–131, 2007.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In Ad-

vances in neural information processing systems, pages 3111–3119, 2013.

http://www.aclweb.org/anthology/P/P14/P14-5010

BIBLIOGRAPHY 98

Joakim Nivre. An efficient algorithm for projective dependency parsing. In Pro-

ceedings of the 8th International Workshop on Parsing Technologies (IWPT. Cite-

seer, 2003.

Joakim Nivre and Ryan T McDonald. Integrating graph-based and transition-based

dependency parsers. In ACL, pages 950–958, 2008.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank: An

annotated corpus of semantic roles. Computational linguistics, 31(1):71–106,

2005.

Xiaochang Peng, Linfeng Song, and Daniel Gildea. A synchronous hyperedge re-

placement grammar based approach for amr parsing. CoNLL 2015, page 32,

2015.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. Proceedings of the Empiricial Methods in Natu-

ral Language Processing (EMNLP 2014), 12:1532–1543, 2014.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and Kevin Knight. Aligning en-

glish strings with abstract meaning representation graphs. In Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 425–429, 2014.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zimak. Semantic role label-

ing via integer linear programming inference. In Proceedings of the 20th inter-

national conference on Computational Linguistics, page 1346. Association for

Computational Linguistics, 2004.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel Marcu, and Jonathan May.

Using syntax-based machine translation to parse english into abstract meaning

representation. arXiv preprint arXiv:1504.06665, 2015.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

BIBLIOGRAPHY 99

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In

International Conference on Artificial Intelligence and Statistics, pages 661–668,

2010.

Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. A reduction of imitation

learning and structured prediction to no-regret online learning, 2011.

Francesco Sartorio, Giorgio Satta, and Joakim Nivre. A transition-based depen-

dency parser using a dynamic parsing strategy. In ACL (1), pages 135–144, 2013.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cogni-

tive sciences, 3(6):233–242, 1999.

Shai Shalev-Shwartz, Koby Crammer, Ofer Dekel, and Yoram Singer. Online

passive-aggressive algorithms. In Advances in neural information processing

systems, page None, 2003.

David Silver, James Bagnell, and Anthony Stentz. High performance outdoor nav-

igation from overhead data using imitation learning. Robotics: Science and Sys-

tems IV, Zurich, Switzerland, 2008.

Andreas Vlachos. An investigation of imitation learning algorithms for structured

prediction. In 10th European Workshop on Reinforcement Learning, pages 143–

154. Citeseer, 2012.

Andreas Vlachos and Stephen Clark. A new corpus and imitation learning frame-

work for context-dependent semantic parsing. Transactions of the Association

for Computational Linguistics, 2:547–559, 2014.

Andreas Vlachos and Mark Craven. Search-based structured prediction applied

to biomedical event extraction. In Proceedings of the Fifteenth Conference on

Computational Natural Language Learning, pages 49–57. Association for Com-

putational Linguistics, 2011.

BIBLIOGRAPHY 100

Andreas Vlachos and Mark Craven. Biomedical event extraction from abstracts

and full papers using search-based structured prediction. BMC bioinformatics,

13(Suppl 11):S5, 2012.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. A transition-based algorithm for

amr parsing. North American Association for Computational Linguistics, Denver,

Colorado, 2015a.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. Boosting transition-based

amr parsing with refined actions and auxiliary analyzers. In Proceedings of

the 53rd Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing (Vol-

ume 2: Short Papers), pages 857–862, Beijing, China, July 2015b. Asso-

ciation for Computational Linguistics. URL http://www.aclweb.org/

anthology/P15-2141.

Keenon Werling, Gabor Angeli, and Christopher D. Manning. Robust subgraph

generation improves abstract meaning representation parsing. In Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 982–991, Beijing, China, July 2015. Asso-

ciation for Computational Linguistics. URL http://www.aclweb.org/

anthology/P15-1095.

Hiroyasu Yamada and Yuji Matsumoto. Statistical dependency analysis with sup-

port vector machines. In Proceedings of IWPT, volume 3, pages 195–206, 2003.

John M Zelle and Raymond J Mooney. Learning to parse database queries using

inductive logic programming. In Proceedings of the National Conference on

Artificial Intelligence, pages 1050–1055, 1996.

Yue Zhang and Stephen Clark. A tale of two parsers: investigating and combin-

ing graph-based and transition-based dependency parsing using beam-search. In

http://www.aclweb.org/anthology/P15-2141
http://www.aclweb.org/anthology/P15-2141
http://www.aclweb.org/anthology/P15-1095
http://www.aclweb.org/anthology/P15-1095

BIBLIOGRAPHY 101

Proceedings of the Conference on Empirical Methods in Natural Language Pro-

cessing, pages 562–571. Association for Computational Linguistics, 2008.

	Introduction
	AMR background
	Previous work on English to AMR translations
	Our contribution

	Background
	Previous Work on AMR to English translation
	AMR parsing as Structured Prediction
	Transition-based parsing
	Imitation Learning background
	Cost-sensitive and confidence-weighted Classification

	Data
	Training corpus
	F-Score

	A novel transition-based graph parsing algorithm for AMR
	Fragments
	Pre-processing and initialisation
	Action Space
	Features used
	Classifier
	The Expert Policy
	Alignment impacts
	Unseen Lemma replacement

	Imitation Learning approach
	Combinations of LOLS and V-DAgger
	Smatch as a non-decomposable loss function

	Experiments
	Validation Results
	Final Results

	Conclusion and Future Work
	AMR performance
	Imitation Learning

	Bibliography

