
UNIVERSITY COLLEGE LONDON

MASTERS THESIS

A Supervised Approach to Extractive
Summarisation of Scientific Papers

Author:
Edward Collins

Supervisor:
Dr. Isabelle AUGENSTEIN

This report is submitted as part requirement for the MEng Computer Science at
UCL. It is substantially the result of my own work except where explicitly indicated

in the text.

in the

Department of Computer Science

The report may be freely copied and distributed provided the source is explicitly
acknowledged.

May 2, 2017

http://www.ucl.ac.uk/
http://www.johnsmith.com
http://www.jamessmith.com
http://department.university.com

iii

University College London

Abstract
Faculty of Engineering Sciences

Department of Computer Science

MEng Computer Science

A Supervised Approach to Extractive Summarisation of Scientific Papers

by Edward Collins

When doing any kind of research, one of the most tedious tasks is to read through

hundreds of papers to do a literature review. By harnessing the power of machine

learning, the aim of this work is to build a system capable of automatically sum-

marising scientific papers using extractive summarisation in order to supplement

the abstract of a paper so that if readers require a deeper understanding than the

abstract can provide, they do not have to trawl through the main, dense text. Scien-

tific article summarisation presents a particularly hard problem for summarisation

because the text to summarise is long; far longer than is traditionally handled by au-

tomatic summarisers. By using a plethora of machine learning and natural language

processing techniques ranging from basic counting to deep learning, a system able to

generate short summaries, or “highlights” of papers has been developed which pro-

duces good results using the research standard metric for summarisation tools and

when compared to other work. Furthermore, a brand new dataset for summarising

scientific articles has been presented and ways of extending it automatically have

been created, which has led to the first ever dataset for the summarisation of scien-

tific papers with a sufficient amount of data to apply state of the art deep learning

techniques. To our knowledge, deep learning has never been applied to the sum-

marisation of scientific papers before this work due to a poverty of data, so this is

the first research to present benchmark performances from deep learning algorithms

on this new dataset.

http://www.ucl.ac.uk/
http://www.engineering.ucl.ac.uk/
http://department.university.com

v

Acknowledgements
I would like to thank my supervisor, Dr. Isabelle Augenstein, for her guidance,

patience and insights with this work. Our many discussions and plans were instru-

mental to making this project a success.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Motivating Summarisation . 1

1.2 Challenges of Automatically Summarising Papers 3

1.3 Project Objectives and Contributions . 3

1.4 Personal Aims . 4

1.5 Thesis Guide . 4

2 Background 5

2.1 Deep Learning . 5

2.1.1 Convolutional Neural Networks 5

2.1.2 Recurrent Neural Networks . 6

2.2 Word Embeddings . 8

2.3 The State of the Art in Extractive Summarisation 9

2.3.1 RNN-based . 9

2.3.2 CNN-based . 11

2.3.3 Other Deep Learning Methods 12

2.3.4 Feature-based Methods . 12

2.4 Summarising Scientific Papers . 14

2.5 Summarisation Datasets . 16

3 Method 19

3.1 Dataset and Problem Formulation . 19

3.1.1 Problem Formulation . 20

3.1.2 Creation of the Training and Testing Data 20

3.2 ROUGE Metrics . 22

3.2.1 ROUGE-L . 23

3.2.2 HighlightROUGE . 23

3.2.3 AbstractROUGE . 24

3.3 Sentence Encoding . 24

3.4 Feature Engineering . 26

3.5 Summariser Architectures . 28

viii

4 Results and Analysis 33

4.1 Most Relevant Sections to a Summary 33

4.2 Model Performance and Error Analysis 35

4.3 Summary Quality and Comparison to Other Work 38

4.4 Effect of Using ROUGE-L to Generate More Data 39

4.5 Effect of AbstractROUGE on Summariser Performance 40

4.6 Feature Analysis . 41

5 Conclusion and Evaluation 45

5.1 Summary of Approach and Achievements 45

5.2 Results Evaluation . 46

5.2.1 Main Weaknesses . 47

5.2.2 Areas for Improvement . 48

5.3 Future Work . 48

5.3.1 Making Use of Citations . 48

5.3.2 Adding Attention . 48

5.3.3 Experimenting with Sentence Encoding 49

5.3.4 Encoding Larger Sections of the Documents 49

5.3.5 Format of the Training Data . 49

5.3.6 More Feature Engineering . 50

5.3.7 More Advanced Summary Construction After Neural Net Out-

put . 50

5.4 Project and Personal Evaluation . 50

A Results Tables 53

B Project Plan 57

C Interim Report 61

D Code Listing 67

Bibliography 69

ix

List of Figures

2.1 An LSTM-RNN . 7

3.1 System Architecture . 19

3.2 Sentence Encoding . 25

3.3 Summariser Overview . 28

3.4 SFNet and SAFNet . 30

4.1 ROUGE and Copy/Paste Score By Section 34

4.2 Model Performance Comparison . 35

4.3 Model Performance Comparison When Trained on Low / Extended

Datasets . 39

4.4 Model Performance Comparison When Trained With and Without Ab-

stractROUGE . 40

4.5 Feature Weighting Comparison . 41

4.6 AbstractROUGE Score Distribution . 42

4.7 Sentence Length vs Document TF-IDF 43

xi

List of Tables

1.1 Summary Example . 2

3.1 Dataset Statistics . 21

A.1 ROUGE and Copy/Paste Score by Section Table 53

A.2 Model Comparison Table . 54

A.3 Low Data Comparison Table . 54

A.4 AbstractROUGE Comparison Table . 54

A.5 Feature Weighting Comparison Table 55

xiii

List of Abbreviations

RNN Recurrant Neural Network

LSTM Long Short Term Memory

SL Supervised Learning

ROUGE Recall-Oriented Understudy for Gisting Evaluation

LCS Longest Common Substring

NLP Natural Language Processing

GRU Gated Recurrent Unit

AI Artificial Intelligence

ML Machine Learning

TF-IDF Term Frequency-Inverse Document Frequency

1

Chapter 1

Introduction

1.1 Motivating Summarisation

If you have ever had to trawl your way through hundreds of scientific papers while

doing a literature review then you may well have thought to yourself "I wish there

was a quicker way of doing this". More and more scientific papers are being writ-

ten and published everyday - recent data suggests one every 20 seconds (“The Rise

of Open Access” 2012) - and online repositories of papers are turning into true

leviathans: Elsevier Scopus had 57 million papers stored in 2016 and Thomson

Reuters ISI Web of Knowledge contained a gargantuan 90 million (Ronzano and Sag-

gion, 2016). Very soon, if not already, it will be impossible for a single or even a team

of humans to review all of the literature surrounding a subject. Google Scholar for

example, as of 2017, lists just shy of 4 million entries for the query "deep learning".

To deal with such overwhelming numbers, humans will need to turn to computers

and to artificial intelligence (AI).

When doing a literature review, the first thing a person is likely to check on a pa-

per is its title. A title is effectively a one-line summary of a paper’s contents. A

logical approach after that would be to scan the abstracts of many papers to see if

they could be relevant to your work. But what about after that? Once you have

gathered one or two hundred papers, how do you then read and comprehend all

of them? An assortment of techniques exist for quickly gaining an understanding

of a paper, such as reading specific sections1 like the Introduction and Conclusion

before reading the rest of the paper. However this will still involve a certain degree

of mining the main, dense text of the paper. But what if there was a way to have a

computer do that part for you? What if a program could simply present you with

a summary of the main points of the paper as a supplement to the abstract? If that

were possible, then quickly gaining a deeper understanding of papers could become

much more feasible. As Kageback et al., 2014 say, a well written summary can sig-

nificantly reduce the amount of work needed to digest large amounts of text on a

given topic.

1e.g. https://www.elsevier.com/connect/infographic-how-to-read-a-scientific-paper

2 Chapter 1. Introduction

Paper Title Statistical estimation of the names of HTTPS servers with domain name graphs

Highlights we present the domain name graph (DNG), which is a formal expression that can keep track of
cname chains and characterize the dynamic and diverse nature of DNS mechanisms and deployments. We
develop a framework called service-flow map (sfmap) that works on top of the DNG. sfmap estimates the host-
name of an HTTPS server when given a pair of client and server IP addresses. It can statistically estimate the
hostname even when associating DNS queries are unobserved due to caching mechanisms, etc through exten-
sive analysis using real packet traces, we demonstrate that the sfmap framework establishes good estimation
accuracies and can outperform the state-of-the art technique called dn-hunter. We also identify the optimized
setting of the sfmap framework. The experiment results suggest that the success of the sfmap lies in the fact
that it can complement incomplete DNS information by leveraging the graph structure. To cope with large-scale
measurement data, we introduce techniques to make the sfmap framework scalable. We validate the effective-
ness of the approach using large-scale traffic data collected at a gateway point of internet access links .

Summary Statements Highlighted in Context from Section of Main Text Contributions: in this work, we
present a novel methodology that aims to infer the hostnames of HTTPS flows, given the three research chal-
lenges shown above. The key contributions of this work are summarized as follows. We present the domain
name graph (DNG), which is a formal expression that can keep track of cname chains (challenge 1) and char-
acterize the dynamic and diverse nature of DNS mechanisms and deployments (challenge 3). We develop a
framework called service-flow map (sfmap) that works on top of the DNG. sfmap estimates the hostname of
an https server when given a pair of client and server IP addresses. It can statistically estimate the hostname
even when associating DNS queries are unobserved due to caching mechanisms, etc (challenge 2). Through
extensive analysis using real packet traces , we demonstrate that the sfmap framework establishes good esti-
mation accuracies and can outperform the state-of-the art technique called dn-hunter, [2]. We also identify the
optimized setting of the sfmap framework. The experiment results suggest that the success of the sfmap lies in
the fact that it can complement incomplete DNS information by leveraging the graph structure. To cope with
large-scale measurement data, we introduce techniques to make the sfmap framework scalable. We validate the
effectiveness of the approach using large-scale traffic data collected at a gateway point of internet access links.
The remainder of this paper is organized as follows: section2 summarizes the related work. [...]

TABLE 1.1: An example of a document with summary statements
highlighted in context.

Automatic summarisation aims to provide these computer written summaries. Ac-

cording to Chen, 2015, there are four types of summary of a piece of text that can

be produced: informative, which reflect the main points of a piece of text; indicative,

which conveys information like writing style and topics covered but not the actual

information in the text; critical, which provides a judgement of a piece of text; and

contrastive, which extracts multiple points of view from the text. In this work we fo-

cus on informative summaries which would best supplement the abstract of a paper.

An example informative summary, highlighted in context, is shown in Table 1.1. The

two main types of informative summary are generic, which provides an overview of

the points in the text; and query-based which specifically answers a user’s question

(Chen, 2015).

There are two main streams of techniques which are used to produce informative

summaries, both generic and query-based: extractive approaches and abstractive ap-

proaches. Extractive summarisation is the simpler of the two methods (Fang et al.,

2017), and works by extracting salient pieces of text, often sentences, from a text doc-

ument which best summarise that document. Extractive summarisation guarantees

a certain level of quality in the summary because its sentences will be written by

the authors of the paper so should have proper grammatical form. Hirao et al., 2017

state that there are hard limits to how good an extractive summariser can be, and

believe that the topic is undergoing a paradigm shift to abstractive summarisation.

Abstractive summarisers generate entirely new text to summarise a document which

1.2. Challenges of Automatically Summarising Papers 3

is particularly useful for when sentences taken out of context are not a good basis

for forming grammatical and coherent summaries, such as in novels. Abstractive

summarisers have seen most success in the domain of news summarisation because

news articles do not tend to be particularly long; abstractive summarisers are cur-

rently not adept at summarising long articles (Chen et al., 2016).

In this work we are concerned with summarising scientific papers, which tend to

be significantly longer than news articles. In addition, papers are a technical domain

with fairly regular and explicit language, so we have opted for the task of extractive
summarisation. Doing so also has the advantage that summaries would be directly

quotable, which they would not be with abstractive summaries.

1.2 Challenges of Automatically Summarising Papers

The main challenge of summarising scientific papers is their length. Papers can con-

vey many different concepts and conclusions throughout, so effectively capturing all

of these is difficult. Furthermore, ensuring that generated summaries are coherent

and make sense when taken out of context is another difficult task. Finally, produc-

ing a sufficient amount of data to apply any kind of deep learning is a difficult task

as deep learning methods are notoriously data-hungry (LeCun, Bengio, and Hinton,

2015). To our knowledge, no datasets for summarisation of scientific publications of

sufficient size and format to use for deep learning exist.

1.3 Project Objectives and Contributions

The main objectives of the project are summarised below. These also formed the

main contributions of this project once they had been achieved:

• To study the structure of scientific papers and see which sections are most use-

ful in generating summaries and have the highest information content. Our

initial hypothesis was that the abstract would be most relevant to summaries

as it is already a summary itself, followed by the conclusion because this tends

to summarise the main message and achievement of the paper; and the intro-

duction which gives a basic background of the topic area.

• To study and present methods for extending a new dataset for the summarisa-

tion of scientific documents, with the hope that the size of this dataset can

be used to inspire a new generation of scientific paper summarisers which

make use of state of the art techniques like deep learning; which have recently

enjoyed much success with summarising news articles (Nallapati, Zhai, and

Zhou, 2016; Cheng and Lapata, 2016).

4 Chapter 1. Introduction

• To present a plethora of summarisation techniques which make use of both

neural and traditional methods that can be used to summarise the scientific

articles given in the dataset and be presented as benchmark performance mea-

sures.

• To present one or more summarisation algorithms which would allow a reader

to gain a general understanding of what a paper is about from only reading this

summary.

• To rigorously test a small set of features which can be used in this summarisa-

tion task as further benchmarks.

1.4 Personal Aims

I hope to gain a decent understanding of statistical natural language processing and

how machine learning techniques can be used in NLP. I also hope to gain a decent

knowledge of deep learning techniques and particularly how to implement these in

TensorFlow. I also hope to produce a summarisation system which outperforms at

least simplistic methods and will make literature reviewing less tedious.

1.5 Thesis Guide

The rest of the thesis is structured as follows. In Chapter 2 a comprehensive literature

review of extractive summarisation and summarisation of scientific papers is given.

In Chapter 3, the method used to achieve all of the objective described above is

given, excluding the method of determining the sections most relevant to a summary

which is explained in the next chapter. Chapter 4 details the results achieved in this

project and gives an analysis of these. Finally Chapter 5 gives conclusions and an

evaluation of the project, as well as a section on potential future work in this area.

5

Chapter 2

Background

The purpose of this chapter is to give an overview of the state of the art when it

comes to extractive summarisation and summarisation of scientific documents. In

addition to this, a survey of the available datasets for scientific paper summarisation

is conducted.

2.1 Deep Learning

If you were to take any of the most popular learning algorithms from before 2012,

they would most likely rely on hand engineered features from which to learn (Le-

Cun, Bengio, and Hinton, 2015). The paradigm shifted entirely after 2012 with the

ImageNet competition win by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton,

who significantly outperformed the competition using a deep Convolutional Neural

Network which was able to learn complex representations from raw data, requir-

ing no hand engineered features (Krizhevsky, Sutskever, and Hinton, 2012). Deep

learning takes the concept of neural networks trained with the backpropagation al-

gorithm and expands them to build computational models consisting of many layers

of simple learning functions which produce non-linear mappings, allowing them to

learn extremely fine-grained and complex representations of data (LeCun, Bengio,

and Hinton, 2015). Today there are many types of deep networks performing im-

pressive feats, although two of the most popular and well known types are Convo-

lutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). RNNs

are of particular interest to this work so will be explained in greater detail.

2.1.1 Convolutional Neural Networks

CNNs have become the workhorse of computer vision algorithms used in ImageNet

since 2012, with recent entries becoming ever more elaborate such as with Google’s

invention of Inception modules (Szegedy et al., 2014) or with Microsoft’s staggering

152-layer ResNet (He et al., 2015). However CNNs are not only useful in computer

vision, they have also been used in the realm of natural language processing to great

success (e.g. (Kim, 2014; Kalchbrenner, Grefenstette, and Blunsom, 2014)). In brief,

CNNs use many layers of a mathematical operation called convolution, where a

6 Chapter 2. Background

small matrix of parameters is convolved with the input. If the input were an image

then the convolution operation can be visualised as sliding a small filter over the

image by a certain number of pixels each step, and computing a score based on the

learned weights in the filter. These layers are often followed by pooling and a ReLU

non-linearity (Krizhevsky, Sutskever, and Hinton, 2012).

It is possible to turn the learned filters from convolution into images themselves

and visualise what they have learned to recognise. In lower layers, the features

look like edges or blobs of colour. After four layers of convolution and pooling the

features look like recognisable images such as a dog’s face or car tire (Zeiler and

Fergus, 2014). These features will then produce their highest output when they are

compared to a dog in an image for example - indicating that the image contains a

dog. For a more in depth explanation of CNNs, see Zeiler and Fergus, 2014.

2.1.2 Recurrent Neural Networks

RNNs are neural nets where part of the input to the network is the output of the

same network at a previous timestep - the output of the network at time t is fed into

the network at time t+ 1. They are more relevant to this project due to their unique

architecture which means they are naturally disposed towards processing sequen-

tial data such as text (LeCun, Bengio, and Hinton, 2015). RNNs have been used to

great effect in tasks ranging from language modeling (Jozefowicz et al., 2016) to ma-

chine translation (Luong, Pham, and Manning, 2015) to drawing images (Gregor et

al., 2015; Oord, Kalchbrenner, and Kavukcuoglu, 2016). They can even be combined

with CNNs to generate captions for images (Xu et al., 2016).

One of the most famous RNN architectures is based on Long-Short Term Memory

cells (Hochreiter and Schmidhuber, 1997). At each timestep, the LSTM-RNN feeds

the input at that timestep, the output of the network from the previous timestep,

and a cell state which the network maintains that can be thought of as its mem-

ory. LSTMs can handle long-range dependencies in the data far better than RNNs

based on a single activation function and do not suffer from the "vanishing gradient"

problem - where the error signal becomes too weak to update the weights efficiently.

Cheng and Lapata, 2016 used LSTMs in their work on summarisation because of this.

Figure 2.1 shows a diagram of an LSTM-based RNN and how it takes an input at

each timestep, in this case words of a sentence (which would be represented nu-

merically using something like word embeddings (Bengio et al., 2003)). The line

running horizontally across the top of the diagram represents the cell state, which

at each timestep is updated using a combination of hidden layer "gates" each with

a specific function. In the diagram, the gates are represented by yellow boxes with

2.1. Deep Learning 7

FIGURE 2.1: A diagram of an LSTM-based RNN showing the internal
cell workings. Source: Colah’s Blog

brightly coloured outlines.

The first gate is outlined in green and is called the "forget gate". Its purpose is to

decide which elements of the cell memory to remove given the current input and

previous output. The second gate outlined in light blue is called the "input gate",

whose purpose it is to decide which values in the cell state will be updated. The

third gate, outlined in dark blue, is called the "candidate gate" which outputs can-

didate values to update the cell state with. The final gate, outlined in purple, is the

"output gate" which decides how much of the current input and previous output to

include in this timestep’s output. Representing the output of the previous timestep

as ht−1, the current input as xt and the cell state from the previous timestep as Ct+1,

the equations for the gates are:

ft = σ(Wf · xt + Uf · ht−1 + bf) (2.1)

it = σ(Wi · xt + Ui · ht−1 + bi) (2.2)

C̃t = tanh(Wc · xt + Ui · ht−1 + bc) (2.3)

ot = σ(Wo · xt + Uo · ht−1 + bo) (2.4)

Where W and U are matrices of weight parameters, b is a bias vector, σ represents a

sigmoid activation function. To update the cell state and give an output, the previous

cell state Ct−1 is multiplied by the forget gate output and then added to the input

gate multiplied by the candidate gate:

Ct = ft � Ct−1 + it � C̃t (2.5)

Where � represents the Hadamard product. Finally the output from the cell is pro-

duced by multiplying the output gate with the cell state which has been compressed

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

8 Chapter 2. Background

to have values ∈ (0, 1):

ht = ot � tanh(Ct) (2.6)

LSTMs can be stacked into multiple layers to make them deeper, overlaid to have

an LSTM reading the input in either direction and have several variants such as

peepholes (Gers and Schmidhuber, 2000), all of which can make them more effective.

LSTMs have also been successfully combined with a mechanism called attention

(Bahdanau, Cho, and Bengio, 2015), which focuses on particular parts of the inputs

to mimic the way humans read.

2.2 Word Embeddings

One of the applications of deep learning is the learning of continuous representa-

tions of words (Bengio et al., 2003). Learning word vectors works from the principle:

“You shall know a word by the company it keeps”

- (Firth, J. R. 1957:11)

Essentially that the semantic meaning of a word is defined by those used around it.

Bengio et al., 2003 were the first to apply deep learning to learning of word embed-

dings, where they were used in a language modeling context because semantically

similar words would be close to each other in the embedded vector space. Mikolov

et al., 2013 and Pennington, Socher, and Manning, 2014 developed improved ver-

sions of the word embedding algorithm a decade later which runs much faster.

Once word embeddings are created, concepts can be represented by vector arith-

metic. Mikolov et al., 2013 give the example of vec("Germany") + vec("capital") =

vec("Berlin"). These continuous representations of words are extremely useful for

many tasks in NLP and are often used as input to algorithms like RNNs (Jozefowicz

et al., 2016).

Word embeddings in their raw form, that is with no processing with advanced algo-

rithms like RNNs, have been used in summarisation before (Kageback et al., 2014) as

well as being input to more advanced algorithms (Nallapati, Zhai, and Zhou, 2016).

Extensive use of word embeddings is made in this work as they are used whenever

the raw data of a sentence to classify as summary or not summary is being fed into

an algorithm. The model used was the Word2Vec algorithm1 pioneered by Mikolov

et al., 2013 and trained on the corpus of scientific papers.

1Implementation used was from Gensim: https://radimrehurek.com/gensim/models/word2vec.html

2.3. The State of the Art in Extractive Summarisation 9

2.3 The State of the Art in Extractive Summarisation

Work on extractive summarisation in recent years can be broadly classified into four

categories: RNN-based, CNN-based, Other Deep Learning Algorithm Based and

Feature Based. This section will go through the main techniques which have been

used under each category. As they are particularly relevant to this project, RNN-

based methods are described in more detail.

2.3.1 RNN-based

Dual RNNs Nallapati, Zhai, and Zhou, 2016 made extensive use of RNNs for ex-

tractive summarisation. They posed the extractive summarisation problem as a bi-

nary classification task for either "summary" (1) or "not summary" (0). They used an

advanced architecture of RNNs based on Gated Recurrent Units (Cho et al., 2014),

consisting of two bidirectional RNNs: one at sentence level and one at document

level.

What this means is that the first RNN read each sentence, where each word was

represented by its word embedding, in both directions at the same time, one word at

a time. The output from this RNN was then fed into a second RNN which read each

sentence in the document from both directions simultaneously. This second RNN

was the arbiter of whether a sentence was a summary sentence or not, outputting a

classification of either 0 or 1 at each timestep indicating whether that sentence was a

summary sentence or not.

To train the system, the Daily Mail/CNN corpus was used which is the largest sum-

marisation corpus currently in existence. It consists of news articles and associated

highlights (Chen, Bolton, and Manning, 2016). Their results improved on state of the

art performance with no feature engineering.

Extending the Dual RNNs Mostly the same authors as in Nallapati, Zhai, and

Zhou, 2016 took the architecture which they defined and extended it slightly into

two types of architecture which they called "Classify" and "Select" (Nallapati, Zhou,

and Ma, 2016). It used the same dual-RNN architecture as the original research but

slightly modified the way in which summaries were chosen.

"Classify" is modeled on the way in which humans would create an extractive sum-

mary: it reads the whole document once, then reads it again, this time picking out

summary sentences as it goes. In so doing, it gains an understanding of the news

story before it starts building summaries.

10 Chapter 2. Background

"Select" reads the whole document through once, then chooses sentences from any-

where in the document all at once to make up the summary.

The authors found "Classify" to be the more successful architecture, thought to be

because reading and classifying sentences in order follows the discourse structure

of the document more closely: sentences towards the start of the article have more

of a summarising function, ones in the middle are more detailed and ones at the end

are again summarising.

Encoder-Decoder Arguably the most advanced extractive summarisation system

to date was developed by Cheng and Lapata, 2016. It is modeled on the Sequence-to-

Sequence (Seq2Seq) model which has come to recent attention as an effective method

to create chatbots and for machine translation (Luong et al., 2016).

Seq2Seq models use two RNNs with different roles: an encoder and a decoder. The

encoder reads the input and outputs a vector representation of it, which is read by

the decoder so that it can output another sequence, such as text in a different lan-

guage. In the realm of summarisation, Seq2Seq models are more often used for ab-

stractive summarisation such as in (Chen et al., 2016) than extractive summarisation.

The model which Cheng and Lapata, 2016 propose uses a CNN to encode each sen-

tence as a vector representation. This is then read by an encoder RNN followed by

a decoder RNN which uses an attention mechanism (Bahdanau, Cho, and Bengio,

2015) to focus the decoder on specific parts of the input. Humans naturally do this,

giving their attention to important aspects of documents as they read them. The en-

coder and decoder RNNs used LSTM cells which prevented the vanishing gradient

problem - where the gradient used to update the weights in backpropagation be-

comes too small to be useful.

This work again used the Daily Mail/CNN dataset as it is the only data source of

sufficient scale for learning algorithms such as this, and again beat the previous state

of the art. This technique achieved a higher score than Nallapati, Zhai, and Zhou,

2016.

A Cameo from Abstractive Summarisation Although this work is on extractive

summarisation, the abstractive model developed by Chen et al., 2016 bears men-

tioning due to its interesting new approach to attention. The model is also based on

Seq2Seq, and the authors raise the concern that simple vectors may not be sufficient

to represent entire documents. To solve this they use both attention and a distraction

mechanism, whereby they can attend to specific areas of the input document but can

also "distract" the model to make it look at other parts of the document. Doing so

2.3. The State of the Art in Extractive Summarisation 11

eliminates the need to read the whole document and hold it all in memory. They

hypothesize that this approach will work better for longer documents.

Drawing it All Together All of these cutting edge techniques based on RNNs are

complex and large. They all use multiple RNNs as opposed to just using a single net-

work, either as an encoder-decoder pair or to read at different levels of abstraction

from the data. It is surprising that, to our knowledge, no successful systems based

on a single RNN for summarisation exist, because this seems to be the logical first

step in using an RNN. None of the described techniques made use of any features at

all - they worked purely from the data in true deep learning fashion; a technique we

wish to replicate in this work as much as possible.

2.3.2 CNN-based

The Prior Nature of a Summary Cao et al., 2015 claimed that sentences can be

good summaries even when taken completely out of context - they have a prior

nature which allows us to see immediately, without the context of surrounding sen-

tences, how good the summary is. To capture this concept with a learning algorithm,

they created a CNN and trained it on a multi-document summarisation dataset

formed of news articles. The outputs from the CNN were combined with a set of

handcrafted features to classify the sentence. Although the task, multi-document

summarisation, is different from this work which is single document, the idea that

sentences can be good summaries without context is extremely important.

Other CNN Methods The majority of other CNN-based summarisation methods

follow an approach more similar to the RNN-based approaches in that they do not

use any handcrafted features at all (Denil, Demiraj, and De Freitas, 2015; Kim, 2014).

Kim, 2014 used the word2vec model of (Mikolov et al., 2013) to represent words

and then trained a CNN based on those vectors for a plethora of different sentence

classification tasks, showing that CNNs achieved some of the best performances,

while Denil, Demiraj, and De Freitas, 2015 used two convolutional nets to represent

the whole document and each sentence and could ascertain how relevant a sentence

was to a document using these encodings. This concept of comparing the encoding

of a body of text and a sentence to gain an understanding of the sentence’s rele-

vance has been used in other approaches which are mostly feature based such as in

Saggion, Abura’ed, and Ronzano, 2016, and is an interesting approach that could

be taken in this work. However, CNNs and even RNNs may have difficulty with

encoding a representation for a whole scientific paper due to its length.

12 Chapter 2. Background

2.3.3 Other Deep Learning Methods

CNNs and RNNs are far from the only deep learning algorithms that can be useful in

summarisation. Yousefi-Azar and Hamey, 2017 built a query-oriented summarisa-

tion system based on the unsupervised method of deep autoencoders (Hinton and

Salakhutdinov, 2006). Autoencoders are a type of neural network which perform

dimensionality reduction on data. They take a large input vector and find a latent

representation for it which is a much smaller vector. Yousefi-Azar and Hamey, 2017

used the term frequency of each sentence as input to the autoencoder which then

represented each sentence as a vector. This work is particularly interesting because

deep autoencoders could be a viable alternative to word embeddings for this sys-

tem, or could be used to encode other parts of the document like the abstract.

A more drastic approach, and another contender for the most advanced system,

was taken by Kong et al., 2017. They designed an entirely new type of neural net-

work module which has dynamic connections - meaning that connections between

neurons can be dynamically altered at runtime. They claim to improve the encoder

/ decoder architecture of Seq2Seq models by including explicit structure in the text.

The framework is said to be less sensitive to text length than standard RNNs or

Seq2Seq models, which could make it particularly applicable to this work. Scientific

documents are longer than the news articles commonly used to train deep learning

based extractive summarisers; so RNNs and Seq2Seq models could suffer consid-

erably when attempting to perform this task - using a completely new architecture

such as this could be the solution.

An approach which is more loosely based on deep learning is to use word embed-

dings without using advanced algorithms on top of them (Kageback et al., 2014;

Kobayashi, Yatsuka, and Taichi, 2015). Kageback et al., 2014 used word embed-

dings in multi-document summarisation and found them to significantly increase

performance. The most interesting thing about their work is the two ways that they

present of combining word vectors of a sentence into a single sentence vector: a sim-

ple way and a complex way. The simple way is to simply add all the word vectors

of the sentence up; the complex way is to use a recursive autoencoder (Socher et al.,

2011). They found that the simple way, vector addition, significantly outperformed

the recursive autoencoder; a result that may seem counter-intuitive but advocates

simplicity and is of particular interest to this work as extensive use of word embed-

dings is made.

2.3.4 Feature-based Methods

Extractive summarisers started out as feature-based systems (Luhn, 1958) and this

has remained their predominant paradigm ever since. The earliest features were

2.3. The State of the Art in Extractive Summarisation 13

word frequency (Luhn, 1958), location in the document (Baxendale, 1958) and Term

Frequency Inverse Document Frequency (TF-IDF), developed by Salton, Wong, and

Yang, 1975 and first used in summarisation by Salton et al., 1996.

It is only since 2012 that systems capable of learning from raw data have picked

up (LeCun, Bengio, and Hinton, 2015), such as (Nallapati, Zhai, and Zhou, 2016).

Despite the acceleration in deep learning based methods, many works published to-

day are still feature-based (e.g. Wan and Zhang, 2014; Ren, Wei, and Chen, 2016;

Dlikman and Last, 2016). The features used have become steadily more advanced

in the past 60 years. While the original summarisation system proposed by Luhn,

1958 used only a single feature - how relevant words in each sentence were to the

document - modern systems often use a combination of up to 30 features (Dlikman

and Last, 2016; Litvak et al., 2016).

Commonly used features include sentence length, sentence location, TF-IDF, pres-

ence of cue word and words in the title (Kupiec, Pedersen, and Chen, 1995; Teufel

and Moens, 2002; Saggion, Abura’ed, and Ronzano, 2016; Ren, Wei, and Chen, 2016).

Sentence location has been said to be of particular importance to summaries (Ed-

mundson, 1969; Mani, 2001), and it has been noted that the first few sentences of

news articles tend to be good summaries for the rest of the article (Lin and Hovy,

1997). In addition to these common features which are almost universally included

in any summariser, many more complicated features have been developed.

A good example of a more advanced feature is the certainty metric developed by

Wan and Zhang, 2014. They observed that in news documents, sentences are some-

times not certain, for example using phrases like "it seems that X will Y...". Uncertain

sentences may not produce good summaries, so they developed their own training

set and "certainty features" such as whether the sentence contained specific certainty

marker words like "seems", then used support vector regression to give each sen-

tence a certainty score, rather than a coarse classification as either "certain" or "un-

certain". This example is of particular interest because of the concept of using two

intertwined machine learning algorithms - one to generate a score (certainty mea-

sure) and the other to rank based off of that, rather than simply classifying as certain

or uncertain. Using this continuous representation of a feature rather than a binary

feature could be a good approach to take and could be more expressive.

Dlikman and Last, 2016 also took a feature-based approach, using 30 different fea-

tures with many part-of-speech (POS)-based features. They then compared three

14 Chapter 2. Background

different learning algorithms: logistic regression, regression trees and a genetic al-

gorithm (also used by Litvak, Last, and Friedman, 2010), finding that logistic re-

gression significantly outperformed the other two methods. The reason this is in-

teresting is because it advocates simplicity with a parameter-based approach. Al-

though not state of the art, many other algorithms for ranking based on features have

been trialled including unsupervised methods like K-means clustering (Nomoto and

Matsumoto, 2001) and Bayesian methods like Hidden Markov Models (Conroy and

O’leary, 2001). The fact that the predominant method today appears to be logistic

regression suggests that it was a more successful approach than these algorithms

and would be a good baseline for this work.

One of the predominant ways of ranking in summarisation in the past has been

to used graph-based unsupervised methods such as TextRank (Mihalcea and Tarau,

2004). Graph based methods are good at modeling the dependency between sen-

tences so that context can be taken into account, and are still widely in use today

(Wan and Zhang, 2014; Thomas et al., 2015; Fang et al., 2017). Using graphs also al-

lows redundancy to be eliminated easily, although other approaches based off linear

regression can also take account of redundancy such as used by Ren, Wei, and Chen,

2016. They used the ROUGE evaluation metric (Lin, 2004) to check whether candi-

date summary sentences should be included in the summary rather than having a

separate module to prevent redundancy as many systems do (e.g. (Cao et al., 2015)).

A final approach more closely related to graph based methods than feature based

methods is constructing a discourse tree for the document to summarise and us-

ing this (Hirao et al., 2015). The discourse structure of a document is the inherent

structure in a piece of text that determines the relationships between units of text

and their saliency with regard to summarisation. Discourse structure can be repre-

sented as a tree, and the argument goes that by extracting sentences to be summaries

they may lack logical coherence - something which could be prevented by using a

discourse tree. Use of the discourse tree would allow modeling of the interrelation-

ships between entities of knowledge in the document so that a logical structure to

summaries could be ensured. Document discourse or structure is an extremely im-

portant consideration to take into account when summarising scientific literature be-

cause almost all papers have a similar structure (Liakata et al., 2010), and discourse

has specifically been taken into account previously (Cohan and Goharian, 2015).

2.4 Summarising Scientific Papers

Back in 1958, the very first work ever done on summarisation was targeted at sum-

marising scientific papers (Luhn, 1958). Since then, the majority of summarisation

work has been focused on news articles (see Section 2.3), which are far shorter than

2.4. Summarising Scientific Papers 15

scientific documents. The length of papers poses a significant challenge (Kavila and

Radhika, 2015) as there is a lot of information to transmit to the reader in a short

summary.

Some work has been done before on summarising extremely long documents, such

as by Mihalcea and Ceylan, 2007 who attempted to summarise books. Even a sci-

entific paper is short compared to most books; the average book length used by

Mihalcea and Ceylan, 2007 was 92000 words. They made some interesting discover-

ies about how the efficacy of traditional features in summarisation changes for long

documents. The most interesting of these is the feature of sentence position in the

text, which is thought to be one of the most important to a summarisation system

(Edmundson, 1969; Mani, 2001). They found that sentence position, in terms of the

number of sentences since the beginning of the document significantly reduced per-

formance of the summariser because writing styles changed throughout the book.

Instead they divided the book into segments and assigned each sentence a position

feature based on its segment. This way of constructing features is of interest to this

work because scientific documents are long in comparison to news articles and nat-

urally split into segments with different sections.

In previous work on summarising scientific literature, a common theme has been

to make extensive use of citations (Abu-jbara and Arbor, 2011; Qazvinian et al.,

2013; Cohan and Goharian, 2015; Saggion, Abura’ed, and Ronzano, 2016). Citations

are thought to provide short and focused technical summaries of the paper being

cited in the text around the citation (Cohan and Goharian, 2015; Saggion, Abura’ed,

and Ronzano, 2016). However, citation-based summaries only tend to provide sum-

maries of specific concepts in a paper tailored to the author’s point of view rather

than of the whole paper (Elkiss et al., 2008). Nonetheless, citations are largely unique

to scientific literature and should be exploited where possible.

Aside from citations, research papers also have a specific structure which can be

utilised (Teufel, Siddharthan, and Batchelor, 2009; Liakata et al., 2010). Kavila and

Radhika, 2015 capitalized on paper structure by limiting the sections which sen-

tences could be extracted from to the Abstract, Introduction and Conclusion. This

makes intuitive sense because the Abstract is already a summary, the Conclusion

tends to summarise the main message and achievements of the paper and the In-

troduction gives a basic background knowledge. However it could be argued that

there is no point in extracting summary sentences from the abstract because the ab-

stract is already a summary in itself, so readers could just read that. The abstract

does not always have the same writing style as the rest of the paper either (Teufel

and Moens, 2002). A more useful system would generate summaries which supple-

ment the abstract from the rest of the paper, as the abstract does not always capture

16 Chapter 2. Background

all contributions and impacts of a paper (Elkiss et al., 2008), so it would be advanta-

geous to capture these automatically from the rest of the paper.

As with the majority of summarisation systems, paper summarisers are also largely

feature based. Citations and paper structure are usually part of the features. One

such example is from Saggion, Abura’ed, and Ronzano, 2016, who used citation

network, structure and features in their summariser. One of the ways in which

structure is incorporated as a feature here is by encoding sentences, sections and

the entire document as vectors using the TF-IDF metric. Once these encodings were

constructed, sentence vectors could be compared to the abstract, title and document

vectors with cosine similarity to get a sense of how relevant a sentence was to a doc-

ument. A similar approach was also taken by (Kupiec, Pedersen, and Chen, 1995).

Features of this style are of particular interest because they can capture structural

information about a paper in a single number. To our knowledge, this technique

has not been attempted using more advanced encodings than TF-IDF such as word

embeddings, deep autoencoders or RNNs and is an attractive avenue of exploration.

Some of the most common features used are sentence length, sentence position in

paper, sentence overlap with or similarity to the title, sentence TF-IDF score and

presence of cue phrases (e.g. "In conclusion...") (Teufel and Moens, 2002; Visser and

Wieling, 2009; Saggion, Abura’ed, and Ronzano, 2016). Other features used include

TextRank score (Saggion, Abura’ed, and Ronzano, 2016) and custom features such

as whether the sentences contains words from a lexicon of "action words" and the

history of patterns in rhetorical zones (Teufel, Siddharthan, and Batchelor, 2009).

These kinds of algorithms based on features perfectly represent the traditional ap-

proach to machine learning: careful feature engineering and domain expertise in

knowing what makes a good summary (LeCun, Bengio, and Hinton, 2015). To the

best of our knowledge, no research exists which has attempted to use deep learning

in any form to summarise scientific papers.

2.5 Summarisation Datasets

The majority of deep learning algorithms are trained on extremely large datasets.

For example, the ImageNet database (Deng et al., 2009) has over a million images

which can be used for training and the CNN / Daily Mail news dataset has around

1.2 million news articles and associated highlights for training summaries (Chen,

Bolton, and Manning, 2016). CNN / Daily Mail is the only natural language dataset

of its size which is suitable for training deep learning algorithms for summarisation.

It was first used by Nallapati et al., 2016 to train an abstractive summariser and is

2.5. Summarisation Datasets 17

now used in most of the state of the art techniques (see Section 2.3). Cheng and La-

pata, 2016 do indeed say that one of the stumbling blocks of applying deep learning

to extractive summarisation is the lack of training data.

It is perhaps this poverty of data that has prevented deep learning from being ap-

plied to summarisation of scientific papers. None of the existing datasets for sum-

marisation of papers are anything like the size of CNN / Daily Mail. One such exam-

ple is the CL-SciSumm Task, specifically designed for summarising papers (Jaidka

et al., 2016). Each of these papers has three summaries associated with them: an au-

thor written abstract, citation network summary and hand written summary, how-

ever the most recent competition only contained 30 publications 2.

Other work on the summarisation of papers has similarly small datasets: Ronzano

and Saggion, 2016 used a set of 40 papers; Kupiec, Pedersen, and Chen, 1995 used 21

and Visser and Wieling, 2009 used only 9 papers. The largest known scientific paper

dataset was used by Teufel and Moens, 2002, who used a subset of 80 papers from a

larger corpus of 260 articles.

The dataset which we introduce in this work is, to our knowledge, the only large

dataset for summarisation of scientific papers, and its size is sufficient to train data

intensive neural methods.

2http://wing.comp.nus.edu.sg/cl-scisumm2017/

19

Chapter 3

Method

FIGURE 3.1: A diagram of the summary creation pipeline. On all
diagrams: blue indicates a network input, green a neural network,

yellow a data processing operation and red an output.

This chapter describes the approaches taken to solve the challenges set out in the

objectives. Doing so involved developing techniques to analyse the dataset, pre-

processing the data into a form suitable for summarisation and then developing

summarisation methods. Figure 3.1 provides a visual representation of the general

approach.

Although many of the approaches described in Chapter 2 made use of citations to

summarise papers, we have decided to narrow our focus and only work on finding

ways of applying deep learning to summarising papers and will not be using cita-

tions, although they are a potential future development. Likewise, we will not be

using any graph-based methods.

3.1 Dataset and Problem Formulation

The raw data used in this work is a novel summarisation dataset consisting of 10148

computer science publications which were obtained from ScienceDirect1. Computer

Science is one of 27 domains on ScienceDirect, meaning that the dataset could easily

1 http://www.sciencedirect.com/

20 Chapter 3. Method

be extended to include more domains. Every paper in this dataset is guaranteed to

have a title, abstract, author defined keywords and author written highlight state-

ments. The highlight statements are bullet points that should effectively convey the

main message of each paper and are our object of interest in this work. By their na-

ture, the highlight statements are largely independent from eachother; each bullet

point does not tend to rely on ones before it to make sense. They are good examples

of what Cao et al., 2015 call summaries with a prior nature - ones that make sense

and are good summaries even when taken out of context. The highlights therefore

provide a completely different type of summary of the paper than the abstract does

and are good targets for extractive summarisation. The abstract, as a coherent block

of text rather than a set of bullet points, does tend to have dependencies between

sentences, and would make a good target, or gold summary, for abstractive sum-

marisation.

3.1.1 Problem Formulation

We wished to approach the extractive summarisation task as a supervised learning

(SL) task so that we could make use of deep learning techniques which have not, to

our knowledge, been applied to summarising scientific papers before. To do this,

we took inspiration from Cao et al., 2015, who said that sentences can be good sum-

maries even when taken out of context of the surrounding sentences. As most of the

highlight statements in the dataset have this characteristic, we elected to frame the

extractive summarisation training task as binary sentence classification, where we

assign each sentence in a document a label ∈ 0, 1 to indicate whether it is a summary

sentence or not.

When using the trained model to construct summaries, rather than using a coarse

classification of 0 or 1, we used the softer probability score produced by the network

for the sentence being a summary and rank sentences based on this. Figure 3.1 gives

a visual intuition for how the system functions when producing summaries using a

trained network.

3.1.2 Creation of the Training and Testing Data

To create an SL-based system, the data needs to be in a suitable form to train a classi-

fication algorithm which involved a preprocessing phase on the raw papers. As the

problem was framed as a sentence classification task based on the idea that sentences

can be good summaries out of context, the training dataset constructed consisted of

sentences drawn from all 10148 papers in a random order, without the context of

their surrounding sentences. The goal was then that the summariser would be able

to learn to identify the sentences with a good prior nature, as Cao et al., 2015 did.

Taking sentence context into account would require encoding the entire scientific

3.1. Dataset and Problem Formulation 21

Dataset #documents # +ive instances

CSPubSum Train 10148 42745
CSPubSumExt Train 10148 131720
CSPubSum Test 150 625
CSPubSumExtTest 10148 65860

TABLE 3.1: The CSPubSum and CSPubSumExt datasets. Instances
are items of training data with a positive classification, there are an
equal number of negative examples. CSPubSumExt is CSPubSum ex-

tended with HighlightROUGE.

document somehow, a very difficult task given that they are so long which is left to

future development.

Two datasets result from preprocessing the raw papers: CSPubSum and CSPub-
SumExt, each of which have training and test sets and are detailed below. Statistics

for the same datasets are show in in Table 3.1.

CSPubSum Train This dataset uses the highlight statements from each paper as

the positive instances. Each highlight statement is given a label of 1 and stored

in a list in random order - giving a total of 42745 positive training instances. To

generate negative data, we measure how similar each sentence in each paper is to

its highlight statements using the ROUGE-L (Lin, 2004) score, which we also use

as an evaluation metric. Full detail on the ROUGE metrics is given in Section 3.2,

but briefly ROUGE-L will assign a sentence a score between 0 and 1 based on how

similar it is to the summary, 1 being identical. From the bottom 10% of sentences in

a publication which are the least similar to its highlights, we draw an equal number

of negative samples to the positive samples. The resulting dataset has 85490 training

examples.

CSPubSum Test This dataset is organised differently to CSPubSum Train. It is not

a randomised list of sentences with classifications, it is a set of 150 full papers with

no labels and a total of 625 highlights. This test set is used to test fully constructed

summarisation systems - where their task is to produce a summary of the main text

of the paper, which is then compared to the highlight statements of each paper using

the ROUGE-L evaluation score. Summarisers which achieve higher ROUGE scores

are better quality summarisers.

CSPubSumExt Train and Test The CSPubSum dataset has two drawbacks: 1) though

fairly large, it is still an order of magnitude behind comparable large summarisation

datasets (Hermann et al., 2015; Nallapati, Zhai, and Zhou, 2016) and is unlikely to

be sufficient to train deep learning algorithms; 2) it does not have positive labels for

22 Chapter 3. Method

any sentences in the main body of the paper, only the highlights. To solve both of

these issues, we developed a method called HighlightROUGE which can be used to

generate extra training data for summarisation given a human written summary and

a body of text to summarise. Full detail is given in Section 3.2. Using this method

allowed the CSPubSum training set to be extended to comprise some 400K training

instances. This was split into 2
3 training data (263K instances) and 1

3 testing data

(132K instances). The form of this testing data is more like a traditional SL test set -

it, like the training set, is a list of randomized sentences and their classification rather

than a set of full papers like CSPubSum Test.

Having two different styles of testing data is extremely valuable to this project.

CSPubSumExt Test can be used to test the accuracy of the base summarisation mod-

els, while CSPubSum Test can be used to test their actual performance as summaris-

ers. By comparing the two values we receive, we can analyse whether the random-

ized list of sentences is a good way of training a summarisation system: if the ac-

curacy values produced from this test set are discordant with actual summarisation

performance, we know that we need to change the form of our training data. If they

are harmonious, then we know we have found a good way of representing the data

for training. Having the list of randomised sentences to train from makes design-

ing learning algorithms far easier than if we had to take the context of surrounding

sentences into account.

3.2 ROUGE Metrics

Recall-Oriented Understudy for Gisting Evaluationg (ROUGE) is a metric designed

to compare automatically generated summaries with human written summaries and

measure numerically how similar they are, and thus how good the summary is (Lin,

2004). A higher ROUGE score is shown in its introductory paper to correlate well

with human judgement of how good a summary is. There are many variations of

the ROUGE metric such as ROUGE-N and ROUGE-L. In this work we opt to use

the ROUGE-L metric, as used in other research into summarising scientific articles

(Cohan and Goharian, 2015; Jaidka et al., 2016). In addition, ROUGE-L is based on

the longest common subsequence of a sentence with a summary, and as there are

instances of authors copying text directly from the main body of the paper to the

highlights, the ROUGE-L score would be maximised if a summariser could select

these same sentences for the summary.

3.2. ROUGE Metrics 23

3.2.1 ROUGE-L

As detailed by Lin, 2004, ROUGE-L is based on the longest common subsequence

(LCS) of two strings. A common subsequence between two strings Z,X is a se-

quence of words in order from Z which also occur in the same order in X . The

longest common subsequence is the longest such sequence. To use LCS in summari-

sation evaluation, we have two lists of sentences: a reference summary (U , with m

total words) which is the human written summary, and a candidate summary (V ,

with n total words) which is automatically generated. An LCS-based F-measure is

then used to estimate the similarity of two summaries using the following equations:

Rlcs =

∑
ui∈U LCS∪(ui, V)

m
(3.1)

Plcs =

∑
ui∈U LCS∪(ui, V)

n
(3.2)

ROUGE-L =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(3.3)

Where β in our work is set to 1.2, and LCS∪(ui, V) finds the length of the set formed

by taking the union of all longest common subsequences between the reference sen-

tence ui and set of candidate summary sentences V .

The implementation of ROUGE-L which is used in this work is taken from Github

from user harpribot2. This implementation is written in the same language as used

to create the system (Python) and is fast.

3.2.2 HighlightROUGE

HighlightROUGE is a metric developed in this work used to generate additional

training data for summarisation tasks. As input it takes a gold summary and body

of text and finds the sentences within each paper that give the best ROUGE-L score

in relation to the highlights - these sentences represent the ideal sentences to extract

from each paper. Formally, the ideal summary for each paper is:

So = argmax
S={s1,s2,...,sn}

 1

n

∑
si∈S

ROUGE-L(si, gold)

Where So is the summary that would be generated by an oracle, n is the number

of sentences in the summary and S is a set of n sentences forming the candidate

summary. This problem can be easily solved by simply computing the ROUGE-L

score between every sentence in the paper and the summary, sorting by score and

2https://github.com/harpribot/nlp-metrics/blob/master/rouge/rouge.py

https://github.com/harpribot

24 Chapter 3. Method

taking the top-n sentences. We set n = 10 in this work to generate an additional

101480 positive sentence-label pairs to use as training data. Negative examples are

randomly sampled from sentences with the lowest 10% of ROUGE-L scores to match

the number of positive examples.

It is important to note that when generating data using HighlightROUGE, no sen-

tences from the abstracts of any papers were included as training examples. This is

because the abstract is already a summary; our goal is to extract salient sentences

from the main paper to supplement the abstract, not from the preexisting summary.

3.2.3 AbstractROUGE

AbstractROUGE is used as a feature for summarisation and takes inspiration from

techniques used by Saggion, Abura’ed, and Ronzano, 2016 and Kupiec, Pedersen,

and Chen, 1995. It is a metric which exploits the known structure of a paper by mak-

ing use of the abstract, a preexisting summary. The idea of AbstractROUGE is that

sentences which are good summaries of the abstract are also good summaries of the

highlights; a hypothesis that we test in this work.

This approach differs from Saggion, Abura’ed, and Ronzano, 2016 and Kupiec, Ped-

ersen, and Chen, 1995 in that they measure the similarity of each sentence to the

abstract by encoding the sentence and abstract with TF-IDF vectors and comparing

them with cosine similarity, whereas we directly measure how good-a summary a

sentence is for the abstract with an appropriate evaluation metric.

The AbstractROUGE score of a sentence is simply the ROUGE-L score of that sen-

tence and the abstract. Use of this feature was another reason we could not include

sentences from the abstract in the training data: their AbstractROUGE score would

be 1. This would bias the data unfairly given that abstract sentences are not in the

set of sentences which could form a summary.

3.3 Sentence Encoding

In order to be processed by a neural network or any machine learning algorithm,

natural language has to be transformed into a numeric form. We chose to do this

using word embeddings3 (Mikolov et al., 2013), and present two different ways of

using them which are depicted visually in Figure 3.2.

3Word embeddings are obtained by training a Word2Vec skip-gram model on the CSPubSum Train
dataset with dimensionality 100, minimum word count 5, a context window of 20 words and down-
sample setting of 0.001

3.3. Sentence Encoding 25

FIGURE 3.2: A diagram of the two ways in which sentences are en-
coded.

The first and simpler way is shown in diagram (1) of Figure 3.2, where we sim-

ply average the vector representation of each word resulting in a 100 dimensional

vector for the sentence.

The second and more complex way (Figure 3.2, diagram (2)) uses a bi-directional

(reads the sentence from both directions) LSTM-RNN; a bi-directional LSTM was

chosen empirically. Although Kageback et al., 2014 tried more complex ways of en-

coding sentences than simply summing the constituent word vectors, namely with a

26 Chapter 3. Method

recursive autoencoder, they found that the simpler method of summing performed

best. We wished to test if the same were true of an RNN for sentences in this more

complicated domain of scientific paper summarisation. The LSTM maintained an in-

ternal cell state of 128 numbers, and because it was bidirectional the final cell states

of the forwards and backwards RNNs were concatenated to give a vector represen-

tation of the sentence consisting of 256 numbers.

3.4 Feature Engineering

As the sentences in our dataset are randomly ordered, there is no readily available

context for each sentence from surrounding sentences - taking this into account is

a potential future development. To provide context, we therefore turned to the tra-

ditional summarisation method of using handcrafted features. Eight of these were

created for each sentence and are described below. Our system now bears resem-

blance, although a different architecture and dataset, to the work of Cao et al., 2015

who used a CNN to learn features about a sentence with no context then combined

this with a set of handcrafted features. The features used are:

AbstractROUGE A metric which measures how similar a sentence is to the ab-

stract, see Section 3.2.3.

Location Scientific papers have a very specific structure (Liakata et al., 2010; Teufel,

Siddharthan, and Batchelor, 2009) and the section which a sentence appears in can

be a good indicator of its likely utility as a summary. Kavila and Radhika, 2015 for

example, when generating summaries for papers, only considered sentences which

appeared in the abstract, introduction or conclusion for summary generation; and

Saggion, Abura’ed, and Ronzano, 2016 used the section which the sentence ap-

peared in as a feature. More exotic location features have also been used in sum-

marising papers - Visser and Wieling, 2009 extract sentence location features based

on the headings they occurred beneath and Teufel and Moens, 2002 divide the paper

into 20 equal parts and assign each sentence a location based on which segment it

occurred in - an attempt to capture distinct zones of the paper. They also exploit

section structure, noting that sentences toward the start of a section tend to have a

summarising function.

We follow a similar approach, and sentences are assigned an integer location for one

of 7 locations: Highlight, Abstract, Introduction, Results / Discussion / Analysis,

Method, Conclusion, all else4.
4based on a small manually created gazetteer of alternative names

3.4. Feature Engineering 27

Numeric Count is the number of numbers in a sentence, based on the intuition

that sentences containing heavy maths are unlikely to be good summaries when

taken out of context.

Title Score Visser and Wieling, 2009 and Teufel and Moens, 2002, in their work

on summarising scientific papers used the Title Score. Our feature differs slightly

from Visser and Wieling, 2009 in that we only use the main paper title whereas

Visser and Wieling, 2009 use all section headings. To calculate this feature, the non-

stopword words that each sentence contains which overlap with the title of the paper

are counted. As the title has a very high salience with regard to the gold summary

(see Results), this is a good measure of a sentence’s likely utility as a summary.

Keyphrase Score Authors such as Spärck Jones, 2007 refer to the keyphrase score

as a useful summarisation feature. The feature uses author defined keywords and

counts how many of these keywords a sentence contains, the idea being that impor-

tant sentences will contain more keywords.

TF-IDF Term Frequency, Inverse Document Frequency (TF-IDF) is a measure of

how relevant a word is to a document (Ramos, Eden, and Edu, 2003). It takes into

account the frequency of a word in the current document and the frequency of that

word in a background corpus of documents; if a word is frequent in a document

but infrequent in a corpus it is likely to be important to that document. TF-IDF was

calculated for each word in the sentence, and averaged over the sentence to give a

TF-IDF score for the sentence. Stopwords were ignored.

In more detail: TF-IDF is calculated on a word-by-word basis. Term frequency is

calculated by counting the occurrences of each word in a paper and is denoted by

ft,d for the frequency of term t in document d. Inverse document frequency is de-

fined by the equation:

idf(t,D) = log
N

1 + |{d ∈ D : t ∈ d}|

Where N is the total number of documents in the corpus (10148 in this case), D is the

set of all documents and |{d ∈ D : t ∈ d}| is the count of the number of document in

which term t appears one or more times. A 1 is added to the denominator to ensure

there is never a division by 0. TF-IDF is then simply calculated by:

TF-IDF(t, d,D) = ft,d · idf(t,D)

SentenceTF-IDF(S, d,D) =
1

n

∑
w∈S

TF-IDF(w, d,D)

28 Chapter 3. Method

FIGURE 3.3: A diagram of the summarisation system. The neural
network in the box titled "Trained Model" can be replaced with any

summarisation method as desired.

Where n is the number of words in sentence S and all other symbols are as above.

Document TF-IDF Document TF-IDF calculates the same metric as TF-IDF, but

uses the count of words in a sentence as the term frequency and count of words in

the rest of the paper as the background corpus. This gives a representation of how

important a word is in a sentence in relation to the rest of the document.

Sentence Length Teufel and Moens, 2002 created a binary feature for if a sentence

was longer than a threshold. We simply include the length of the sentence as a

feature.

3.5 Summariser Architectures

Figure 3.3 shows in some detail how a summary is created. The network depicted in

the "Trained Model" box is one of the neural networks used in this system, but can be

replaced with any other method which produces a score for how good a summary a

sentence is - with a higher score indicating a higher chance of being a summary.

3.5. Summariser Architectures 29

The models described in this section could take any combination of four possible

inputs, and are named accordingly:

• S: The sentence encoded with an RNN (diagram (2), Figure 3.2.

• A: a vector representation of the abstract of a paper, created by averaging the

word vectors of every non-stopword word in the abstract. Since an abstract

is already a summary, this gives a good sense of relevance when compared

to a sentence vector. This is similar to AbstractROUGE in what it is trying to

achieve but implemented differently - here the network can interpret the vector

however it wants - it is learning from the raw data of the abstract rather than

the feature AbstractROUGE.

• F: the 8 features listed in Section 3.4.

• Word2Vec: the sentence represented by taking the average of every non-stopword

word vector in the sentence (diagram (1), Figure 3.2)

Model names containing "Net" use a neural network with one or multiple hidden

layers. Models ending with "Ens" use an ensemble. All non-linearities are Rectified

Linear Units (ReLUs) as popularised by Krizhevsky, Sutskever, and Hinton, 2012,

which were chosen due to their faster training time than traditional sigmoid or tanh

activation functions. The regularisation technique used was dropout (Srivastava et

al., 2014), which randomly drops connections between neurons in the network to

prevent the network from becoming too dependent on any particular connection. It

is effectively a cheap way of ensembling.

Single Feature Models The simplest class of summarisers use a single type of fea-

ture from Section 3.4. The sentences are sorted into descending order by the feature

being used and the top-n sentences are taken as the summary, then sorted back into

the order they appear in in the paper. Features Sentence Length, Numeric Count

and Section are excluded.

Features Only: FNet A single layer neural net to classify each sentence based on

all of the 8 features given in Section 3.4. A future development is to try this with

other classification algorithms.

Word Vector Models: Word2Vec and Word2VecAF Both single layer networks.

Word2Vec takes as input the sentence represented as an averaged word vector of 100

numbers (diagram (1), Figure 3.2). Word2VecAF takes the sentence average vector,

abstract average vector and handcrafted features, giving a 208-dimensional vector

for classification.

30 Chapter 3. Method

FIGURE 3.4: Architecture diagrams of the two most involved models.

LSTM-RNN Method: SNet Takes as input the ordered words of the sentence rep-

resented as 100-dimensional vectors and feeds them through a bi-directional LSTM-

based RNN with 128 hidden units (diagram (2) Figure 3.2) and dropout. Dropout

probability was set to 0.5 which is thought to be near optimal for many tasks (Srivas-

tava et al., 2014). Output from the forwards and backwards LSTMs is concatenated

and projected into two classes5.

LSTM and Features: SFNet SFNet combines SNet and FNet into a single network

trained jointly, harnessing the strengths of both nets simultaneously. Its architecture

is shown in diagram (1) of Figure 3.4.

LSTM, Features and Abstract: SAFNet SAFNet, shown in diagram (2) of Figure

3.4 is the most involved architecture presented in this work, which further to SFNet

also encodes the abstract using simple word embedding averaging.

Ensemble Methods: SAF+F and S+F Ensemblers The two ensemble methods use

a weighted average of the output of two different models:

p(summary) =
S1(1− C) + S2(1 + C)

2

5The model is trained until loss convergence on a small dev set

3.5. Summariser Architectures 31

Where S1 is the output of the first summariser, S2 is the output of the second and C

is a hyperparameter. SAF+F Ensembler uses SAFNet as as S1 and FNet as S2 with

C = 0.4. S+F Ensembler uses SNet as S1 and FNet as S2 with C = 0.3. Optimal

values for C were obtained empirically by testing the ensemblers many times on the

CSPubSum Test set with different values for C.

Oracle The oracle summariser was created to find the best possible extractive sum-

maries for each paper in order to compare each model’s performance to the best pos-

sible performance. It works by comparing every sentence in the paper to the gold

highlights with ROUGE-L, ranking the sentences by their ROUGE-L score and tak-

ing the top 10 sentences, then resorting them into the order in which they appear in

the paper. This ensures that the 10 sentences which give the highest ROUGE score

for each paper are extracted.

33

Chapter 4

Results and Analysis

4.1 Most Relevant Sections to a Summary

A straight-forward heuristic way of obtaining a summary automatically would be

to identify which sections of a paper generally represent good summaries and take

those sections as a summary of the paper, or only select summary sentences from

those sections. Kavila and Radhika, 2015 for example only took summary sentences

from the abstract, introduction and conclusion. When reading a scientific paper for

the first time, people will often skim-read it first or read specific sections1, because

certain sections of papers are more relevant to gaining a quick, high-level under-

standing of a paper than others. Evaluation metrics can be used to capture this

intuition statistically by comparing the sentences of each section to gold summaries.

To understand how much each section contributes to a gold summary, we compute

the ROUGE-L score of each sentence compared to the gold summary and average

sentence-level ROUGE-L scores by section. The result is a score between 0 and 1 for

each section depending on how relevant that section is to the highlights.

ROUGE-type metrics are not the only metrics which can be used to determine how

relevant a section is to a summary. Throughout the data, there are approximately

2000 occurrences of authors directly copying sentences from within the main text to

use as highlight statements. By recording from which sections of the paper these sen-

tences came, we can determine from which sections authors most frequently copy

sentences to the highlights, so may be the most relevant to a summary. This is re-

ferred to as the Copy/Paste Score.

Figure 4.1 shows the average ROUGE score for each section over all papers, and the

normalised Copy/Paste score. The title has the highest ROUGE score in relation

to the gold summary, which is intuitive as the aim of a title is to convey informa-

tion about the research in a single line. The abstract has the second highest ROUGE

1https://www.elsevier.com/connect/infographic-how-to-read-a-scientific-paper

34 Chapter 4. Results and Analysis

FIGURE 4.1: Comparison of the average ROUGE scores for each sec-
tion and the Normalised Copy/Paste score for each section. The
wider bars in ascending order are the ROUGE scores for each section,
and the thinner overlaid bars are the normalised Copy/Paste count.

score which also makes sense because the abstract is already a summary itself. Con-

clusion takes third place, also an intuitive result because it often summarises the

achievements and message of the paper.

A surprising result is that the introduction has the third-lowest ROUGE score in

relation to the highlights. The initial hypothesis was that the introduction would be

ranked after the conclusion because it is designed to give the reader a basic back-

ground knowledge of the problem. Indeed, the introduction has the second highest

Copy/Paste score of all sections. The reason the introduction has a low ROUGE

score but high Copy/Paste score is likely due to its length. The introduction tends

to be longer (average length of 72.1 sentences) than other sections, but still of a rela-

tively simple level compared to the method (average length of 41.6 sentences), thus

has more potential sentences for an author to use in highlights, giving the high Copy-

/Paste score. However it would also have more sentences which are not good sum-

maries and thus reduce the overall average ROUGE score of the introduction.

Hence, although some sections are much more likely to contain good summary

4.2. Model Performance and Error Analysis 35

FIGURE 4.2: Comparison of the accuracy performance on the CSPub-
SumExt Test set and ROUGE-L score on CSPubSum Test set for each
summariser. ROUGE Scores are given as a percentage of the Oracle
Summariser score which is the highest score achievable for an extrac-
tive summariser on each of the papers. The wider bars in ascending
order are the ROUGE scores. There is a statistically significant differ-
ence between the performance of the top four summarisers and the

5th highest scoring one (unpaired t-test, p=0.0139).

sentences, and assuming that we do not take summary sentences from the abstract

which is already a summary, then Figure 4.1 suggests that there is no definitive sec-

tion from which summary sentences should be extracted. It does however show

empirically that the commonly used title - abstract - conclusion reading technique

will gain a reader the most information about a paper most quickly.

4.2 Model Performance and Error Analysis

Figure 4.2 shows the performance of all models measured in terms of accuracy and

ROUGE-L on CSPubSumExt Test and CSPubSum Test, respectively. Architectures

which use a combination of sentence encoding and additional features performed

best by both measures - an encouraging first result for use of deep learning in paper

summarisation. The LSTM encoding (diagram (2), Figure 3.2) on its own outper-

forms models based on average word embeddings ((diagram (1), Figure 3.2) by 6.7%

accuracy and 2.1 ROUGE points, showing that the ordering of words in a sentence

36 Chapter 4. Results and Analysis

clearly makes a difference in deciding if that sentence is a summary sentence.

Good performance on the randomised and extended training and test data of CSPub-

SumExt correlates with good performance when actually producing a summary for

CSPubSum Test. This can be seen on the graph, and numerically is a strong positive

correlation (Pearson correlation, R=0.8738).

However an interesting result is that the best performance on the CSPubSumExt

Test did not translate into the best performance on the CSPubSum Test despite the

correlation. SAFNet achieved the highest accuracy on CSPubSumExt Test, however

was worse than the AbstractROUGE summariser on CSPubSum Test. This is most

likely due to imperfections in the training data. A small fraction of sentences in the

training data are mislabelled due to bad examples in the highlights which are exacer-

bated by the HighlightROUGE data generating method. This leads to confusion for

the more involved summariser architectures which are capable of learning complex

enough representations to classify the mislabelled data correctly (i.e. to overfit the

data). Although dropout is a very strong regularisation technique (Srivastava et al.,

2014), additional regularisation such as L2 regularisation may be needed to prevent

this in addition to better quality training data.

The most accurate model on CSPubSumExt Test was SAFNet. Out of a test set size

of 131720, it made 11985 mistakes. Of those, there were more false positives (58%)

than there were false negatives (42%), which means that the model was more likely to

wrongfully predict a sentence to be a summary than it was to not recognise one as a

summary. The two most highly misclassified sections were the Results and Method

sections. 5.7% of all test sentences from the Results were misclassified, and 4.4%

from the Method. For comparison, 2.74% of the Introduction was misclassified and

2.62% of the Conclusion. This is most likely due to the Results and Method sections

being generally more complex than other sections and containing lots of observa-

tions about data or experiments that the summariser thinks are good summaries but

actually are not relevant. Exactly the same trends were exhibited by SNet - more

false positives than false negatives and most mistakes on the Results and Method

sections.

100 sentences from CSPubSumExt Test which were incorrectly classified by SAFNet

were manually examined. Out of those, 37 are mislabelled examples. The primary

cause of false positives was lack of context (16 / 50 sentences) and long range depen-

dency (10 / 50 sentences). Other important causes of false positives were a failure to

recognise that mathematically intense sentences are not good summaries (7 / 50 sen-

tences) and mislabeled data (12 / 50 sentences). Lack of context is when sentences

require information from the sentences immediately before them to make sense. For

4.2. Model Performance and Error Analysis 37

example, the sentence "The performance of such systems is commonly evaluated us-

ing the data in the matrix" is classified as positive but does not make sense out of

context as it is not clear what systems the sentence is referring to. If the summariser

had read the sentence before which describes what the "systems" are, it may have

chosen that sentence as the summary instead.

A long-range dependency is when sentences refer to an entity that is described else-

where in the paper, e.g. sentences referring to figures. These are more likely to be

classified as summary statements when using models trained on automatically gen-

erated training data with HighlightROUGE, because they have a large overlap with

the summary. HighlightROUGE fails to recognise the requirement of knowing what

an entity is in order for the sentence to be a good summary, which is its main weak-

ness.

The primary cause of false negatives was mislabelled data (25 / 50 sentences) and

failure to recognise an entailment, observation or conclusion (20 / 50 sentences).

There are some sentences in the highlights of the form "we set m=10 in this ap-

proach", which are not clear without context, but are labelled as positive because

they are in the highlights. HighlightROUGE, seeing sentences like this in the high-

lights, will label more sentences like this as positive in the data which is why many of

the false negative sentences are mislabelled. Such sentences should only be labeled

as positive if they are part of multi-line summaries, which is difficult to determine

automatically.

Failure to recognise an entailment, observation or conclusion is where a sentence

has the form "entity X seems to have a very small effect on Y" for example, but the

summariser has not learned that this information is useful for a summary, possibly

because it was occluded by mislabelled data.

SAFNet and SFNet achieve high accuracy on the automatically generated CSPub-

SumExt Test dataset, though a lower ROUGE score than other simpler methods such

as FNet on CSPubSum Test. This is likely due to overfitting, which our simpler sum-

marisation models are less prone to.

One option to solve this would be to manually improve the CSPubSumExt labels.

This would be a time consuming operation although we hypothesise that SAFNet

would perform far better as a summariser if trained on such a purified training set.

The other option is to change the form of the training data. Rather than using a ran-

domised list of sentences and trying to learn objectively good summaries (Cao et al.,

2015), each training example could be all the sentences in order from a paper, classi-

fied as either summary or not summary. The best summary sentences from within

38 Chapter 4. Results and Analysis

the paper would then be chosen using HighlightROUGE and used as training data,

and an approach similar to Nallapati, Zhai, and Zhou, 2016 could be used to read

the whole paper sequentially and solve the issue of long-range dependency and con-

text. The main challenge of this is whether the network would be able to encode a

representation of the whole document as they are long.

The issue faced by SAFNet does not affect the Ensemble methods as their predic-

tions are weighted by a hyperparameter tuned with the CSPubSum Test set rather

than a learned projection matrix (as in SFNet). This ensures good performance on

both test sets as the models are adapted to perform better on different examples.

In summary, the model performances show that: reading a sentence sequentially is

superior to averaging its word vectors, simple features that model global context and

positional information are very effective and achieving the highest accuracy on an

automatically generated test set does not guarantee the highest ROUGE-L score on

a gold test set, even though they are strongly correlated. This is most likely caused

by complex models overfitting data that has a small but significant proportion of

mislabelled examples as a bi-product of being generated automatically.

4.3 Summary Quality and Comparison to Other Work

Figure 4.2 shows ROUGE scores as percentages of an Oracle Summariser’s score - the

best possible score achievable. The metric used to measure performance, ROUGE-L,

scores summaries between 0 and 1 - the higher the score the better. The Oracle Sum-

mariser’s average ROUGE-L score on CSPubSum Test was 0.408 - which is slightly

lower than the state of the art results achieved by Nallapati, Zhai, and Zhou, 2016

on the Daily Mail corpus. The best performing model, SAF+F Ensemble, achieved

an average of 0.313 on the CSPubSum Test set, which is approximately in-line with

some of the other methods which Nallapati, Zhai, and Zhou, 2016 compare their

system to on the Daily Mail corpus. These are satisfying results and show that the

system capable of summarising scientific papers developed here can achieve decent

results, comparable to state of the art news summarisers, despite the length of the

documents. In comparison to Cohan and Goharian, 2015, who also used ROUGE-L

for their scientific publication summariser, our system performs to approximately

the same level. The comparison is not perfect however since our system uses a com-

pletely different type of gold summary to Cohan and Goharian, 2015, who use a

human written summary which had contextual dependencies between sentences.

The data style of our corpus is more similar to the CNN / Daily Mail set which also

uses bullet point highlights as the gold summary.

4.4. Effect of Using ROUGE-L to Generate More Data 39

FIGURE 4.3: Comparison of the ROUGE scores of FNet, SAFNet
and SFNet when trained on CSPubSum Train (bars on the right) and

CSPubSumExt Train (bars on the left).

By manual inspection, the generated summaries do not tend to have good flow be-

tween sentences - each is quite disjoint. This is to be expected given that we trained

the system to look for sentences which were good standalone summaries. Every

summary will usually contain between 1 and 3 poor quality sentences which usu-

ally make no sense without context. The remaining sentences however are nearly

always sufficient to transfer an understanding of what the paper is about, meaning

that they could be effective supplements to the abstract. Real world field-testing

would be needed to determine how useful humans actually find these summaries.

A suggested method to deal with the summaries being out of context is to highlight

them in place in the main body of the text. That way they would be surrounded by

their contextual sentences but would be clearly indicated to the reader as sentences

which convey a large amount of information about the paper.

4.4 Effect of Using ROUGE-L to Generate More Data

One of the contributions of this work is a way to use evaluation metrics to gener-

ate extra training data. Figure 4.3 compares three models trained on CSPubSumExt

40 Chapter 4. Results and Analysis

FIGURE 4.4: Comparison of ROUGE scores of the Features Only,
SAFNet and SFNet models when trained with (bars on the left) and
without (bars on the right) AbstractROUGE, evaluated on CSPubSum
Test. The FNet classifier suffers a statistically significant (p=0.0279)

decrease in performance without the AbstractROUGE metric.

Train (with generated data) and the same models trained on CSPubSum Train (with-

out generated data; the feature of which section the example appeared in was re-

moved to do this). The FNet summariser and SFNet suffer statistically significant

(p = 0.0147 and p < 0.0001) drops in performance from using the unexpanded

dataset, although interestingly SAFNet does not, suggesting it is a more stable model

than the other two. These drops in performance however show that using the method

we have described to increase the amount of available training data does improve

model performance for summarisation. This is an important result because by ex-

tending the data as described, there are sufficient quantities of it for deep learning

algorithms to be trained, meaning that they can be applied to summarising scientific

documents which they have not been before.

4.5 Effect of AbstractROUGE on Summariser Performance

This work suggested use of the AbstractROUGE metric as a feature, following the

idea of measuring similarity to the abstract by Saggion, Abura’ed, and Ronzano,

2016 and Kupiec, Pedersen, and Chen, 1995. Figure 4.4 compares the performance

4.6. Feature Analysis 41

FIGURE 4.5: Comparison of the weights given to each of the fea-
tures by a logistic regression classifier with and without the Abstrac-
tROUGE feature. A great deal of weight is given to the Abstrac-

tROUGE metric when it is present.

of 3 models trained with and without AbstractROUGE. This shows two things: the

AbstractROUGE metric does improve performance for summarisation techniques

based only on feature engineering; and learning a representation of the sentence

directly from the raw text as is done in SAFNet and SFNet as well as learning from

features results in a far more stable model, still able to make good predictions even

if certain features are not available for training. This is another important result as

learning from raw text has not been attempted in summarising scientific literature

before, so the fact that we have shown that doing so makes models more stable

means that it is a worthwhile technique to implement for summarising papers.

4.6 Feature Analysis

Figure 4.5 shows weightings for each of the features given by a logistic regression

classifier which achieved a CSPubSumExt Test accuracy of 85.8% (the FNet classifer

achieved 87%), and the same classifier when the AbstractROUGE metric was not

present (CSPubSumExt Test accuracy of 82.8%). When AbstractROUGE is present,

the classifier classifies almost exclusively based on it. When AbstractROUGE is not

present the weights are far more equal in magnitude, however the final accuracy

achieved is significantly lower. An interesting result is that for the classifier with-

out AbstractROUGE, a negative weight is given to the TF-IDF score, meaning that a

higher TF-IDF would make a sentence less likely to be classified as a summary. This

is a strange occurrence as TF-IDF is often used on its own in information retrieval,

42 Chapter 4. Results and Analysis

FIGURE 4.6: Distribution of the AbstractROUGE scores for positive
vs. negative examples.

with a higher score indicating a more relevant document (Ramos, Eden, and Edu,

2003). It is most likely due to the presence of other features being stronger indicators

of likelihood of being a summary. A strong positive weight is given to the title score

as expected for example. Another interesting observation is that a fairly high magni-

tude negative weight is given to Document TF-IDF for both classifiers. This is likely

because words which occur frequently in a sentence and not in the whole document

are quite likely to be mathematical terms which do not make for good summaries.

If the distribution of AbstractROUGE scores across CSPubSumExt is analysed (Fig-

ure 4.6), we can see that positive sentences tend to have a higher AbstractROUGE

score - which justifies the logistic regression classifer’s setting of the AbstractROUGE

weighting so high.

Of all of the combinations of any two features, there is one particular combination

which is worth illustrating, shown in Figure 4.7. It plots two features against ea-

chother - Sentence Length and Document TF-IDF, and shows how all positive sen-

tences are clustered at the lower end of both of these features. This is interesting

because it is the only feature comparison plot which shows any kind of distinct clus-

ter and suggests that the combination of these two features could be instrumental

4.6. Feature Analysis 43

FIGURE 4.7: Scatter plot showing what the feature space looks like
for Sentence Length vs. Document TF-IDF

in classifying sentences. This cluster is reflected by the feature weight plot in Fig-

ure 4.5 where negative weights are given to both Sentence Length and Document

TF-IDF - meaning a lower score in these would be more likely to result in a positive

classification.

45

Chapter 5

Conclusion and Evaluation

5.1 Summary of Approach and Achievements

The high-level goal of developing this system was to provide an automatic sum-

marisation system for scientific papers that would reduce the time required to un-

derstand a paper. This goal was refined to be a way to producing summaries of

scientific papers using a supervised learning-based extractive summarisation algo-

rithm. Ideally, the learning method used would be based on the recently popularized

approach of deep learning. The main obstacles that had to be overcome were the is-

sue of how to make sure extracted sentences made sense out of context; the length of

the scientific articles and thus an effective way of capturing as many of the paper’s

concepts as possible in a single summary; and the poverty of data which had to be

alleviated in order to train data-hungry deep learning algorithms.

To defeat the obstacle of ensuring summaries made sense out of context, we de-

liberately trained the systems to build summaries from sentences which were good

summaries even when taken out of context, following the approach of Cao et al.,

2015. Doing so ensured that it did not matter if summary sentences were discordant

because they would each individually be good summaries. We also included a set of

contextual features to make sure the algorithm had at least some understanding of

each sentence’s context. We trained the system to recognise objectively good sum-

maries by using author written highlight statements which are bullet points as gold

summaries, since they are good summaries without any context.

To overcome the issue of paper length, we analysed which sections of scientific

papers contained the most relevant information to summaries using two different

methods: the ROUGE evaluation metric and Copy/Paste Score. We then used sen-

tence location in the paper as a feature to indicate which section a sentence fell under,

so that the system could learn to focus on specific sections which were most relevant

to summaries and thus not have to consider every sentence in the paper equally.

46 Chapter 5. Conclusion and Evaluation

To alleviate the poverty of data we developed a data generating method called High-

lightROUGE, which worked by acting as an Oracle summariser for each paper in

our base dataset of 10148 papers and labelling the top 10 sentences which best sum-

marised the highlights as positive training examples. An equal number of negative

examples were sampled from the sentences which were the worst summaries, which

when combined with the highlights produced a dataset of around 400K examples

which was sufficient to train deep learning algorithms.

The main contributions of this work therefore are:

• A new dataset of approximately 10K computer science publications and method

for extending the data called HighlightROUGE, which we show empirically to

improve summariser performance.

• A metric, AbstractROUGE, which we use as a feature that is a new way of

comparing a sentence to a paper’s abstract, as is done in much of the scientific

literature, using the ROUGE evaluation metric. We show empirically that this

feature improves feature-based summariser performance.

• The development of a multitude of benchmark summarisation systems on this

dataset using neural as well as traditional feature-based methods. This is the

first work to our knowledge that applies deep learning to the summarisation of

scientific articles and learns from raw data, which we show yields the most sta-

ble performances and the highest performances overall when combined with

feature engineering.

• An analysis of the degree to which different sections in scientific documents

contribute to summarisation

5.2 Results Evaluation

Each goal set out in Section 1.3 was met. For the goal of analysing which sections

in the paper were the most useful for summaries: in Section 4.1 it was shown how

useful different sections within the paper were for summaries, with our initial hy-

pothesis that the introduction would be high up this list being proved false in terms

of its ROUGE score with the summary, but true in terms of the Copy/Paste score.

For the goal of extending the dataset to a sufficient size to train deep learning al-

gorithms, the HighlightROUGE method was developed as detailed in Section 3.2.2,

and proved empirically to improve the performance of deep learning algorithms as

summarisers in Section 4.4. Furthermore, the format of the data which we used to

train our SL-based algorithms was a randomised list, supposedly with positive ex-

amples as sentences which were good summaries even when taken out of context.

5.2. Results Evaluation 47

We successfully proved that good accuracy on this training set correlated strongly

with summarisation performance.

For the goal of presenting a plethora of summarisation techniques as benchmarks

for the dataset, 14 different summarisers were created including: feature-based sum-

marisers, deep neural network-based summarisers, both feature and neural network

based summarisers, ensemble summarisers and an oracle summariser. All of these

models were rigorously tested and provide benchmarks for future work on this

dataset with results and an error analysis being shown in Section 4.2.

For the goal of developing an algorithm which would allow readers to gain a gen-

eral understanding of a paper through only reading the summary produced by the

algorithm, it was shown in Section 4.3 that our system achieves comparable per-

formances by the ROUGE-L measure with recent news summarisation techniques

(Nallapati, Zhai, and Zhou, 2016), and through inspection confirmed that the major-

ity of summaries do convey the general idea of a paper.

Finally, for the goal of rigorously testing a small set of features to use as benchmarks,

we created 8 features including a new one, AbstractROUGE which is a variation on

older techniques (Saggion, Abura’ed, and Ronzano, 2016), which are described in

Section 3.4. These features were then analysed extensively and shown to produce

good summarisation results in Section 4.2. The utility of each feature to summarisa-

tion algorithms was then further analysed in Section 4.6.

5.2.1 Main Weaknesses

The main weakness of the system is its inability to handle context. Despite following

the approach of Cao et al., 2015 to find sentences with little contextual requirements,

this was not always possible and the system does still sometimes classify sentences

which need context to make sense as summary statements. These are in the minority

however and summaries are still understandable.

The other main weakness is that as Hirao et al., 2017 say, there are hard limits to how

good extractive summarisers can be because they can only choose sentences from the

paper itself. This means that the system is barred from improving beyond a certain

point. Hirao et al., 2017 believe that we are currently undergoing a paradigm shift

from extractive to abstractive summarisation which may well be the case here in the

future. Only by allowing machines to write their own text from scratch will true

human quality summaries be created. We hope that this avenue will be explored

in the future now that this dataset is of sufficient size to make training abstractive

summarisers feasible.

48 Chapter 5. Conclusion and Evaluation

5.2.2 Areas for Improvement

There were several areas where some improvements could have been made. Firstly,

CSPubSum Test only has 150 documents, and testing on a greater number would

have given a more reliable result (the Oracle summariser’s average ROUGE score

is 0.408 on CSPubSum Test but 0.421 when averaged across all 10000 papers). Do-

ing this would require gathering more publications to use as test data. Secondly,

metrics other than ROUGE-L could also have been used to test the data. ROUGE-L

was used due to the structure of the data and because other work on summarising

scientific papers has used it (Cohan and Goharian, 2015; Jaidka et al., 2016), see Sec-

tion 3.2. However, recent research has suggested that there may be better metrics

than ROUGE for evaluation (Cohan and Goharian, 2016). Finally, some other simple

experiments could have been run including: using other evaluation metrics in Ab-

stractROUGE and HighlightROUGE, experimenting with different formats for some

features such as a boolean feature for which section the sentence was in rather than

a location number, running the neural network with activation functions other than

ReLU (although these would have required longer to train (Krizhevsky, Sutskever,

and Hinton, 2012)), and testing more RNN architecture variants such as GRU cells

(Cho et al., 2014).

5.3 Future Work

There are many exciting directions that future work could take. The main ones are

detailed here.

5.3.1 Making Use of Citations

Many of the techniques used by authors to summarise scientific papers made use

of citations and the text surrounding citations. This project did not make use of

citations, choosing instead to focus on the application of deep learning. A future de-

velopment is to incorporate citations as they are a unique feature of scientific papers

that should be exploited.

5.3.2 Adding Attention

Many state of the art summarisation techniques make use of attention mechanisms

(Nallapati, Zhai, and Zhou, 2016; Cheng and Lapata, 2016). Attention was not im-

plemented in this project and would definitely be a good next avenue to explore,

especially as it is shown to improve performance and helps with summarising long

documents as shown by Cheng and Lapata, 2016.

5.3. Future Work 49

5.3.3 Experimenting with Sentence Encoding

Word embeddings are not the only way a sentence can be encoded. An approach

such as Yousefi-Azar and Hamey, 2017 could be followed and a deep autoencoder

trained that could represent each sentence, or even each section or the whole paper.

Alternatively and approach such as Cheng and Lapata, 2016 could be used where a

CNN is used to encode each sentence rather than an RNN which was used in this

work.

5.3.4 Encoding Larger Sections of the Documents

When using the abstract as input to our learning algorithms, we simply averaged the

word vectors of each word in the abstract. There is massive room for improvement

here: the abstract could be encoded using a neural network such as an RNN, CNN

or autoencoder. Furthermore, other sections of the paper could be encoded such as

the conclusion or results, or even the entire document, perhaps using an architecture

such as Memory Networks (Weston, Chopra, and Bordes, 2015).

5.3.5 Format of the Training Data

This is perhaps the area with the most exciting possibilities for improvement: differ-

ent formats of data could be used to train networks. For example, HighlightROUGE

could be used to label sentences and training data given in the form of an ordered

list of the sentences in a paper with their classification. An algorithm could then

read each paper in order which would mean sentences would not have to be taken

out of context and perhaps even multi-sentence summaries could be created. This

approach is more similar to the state of the art in news summarisation (Nallapati,

Zhai, and Zhou, 2016), but as scientific documents are longer may require an ar-

chitecture with a better memory such as Memory Networks (Weston, Chopra, and

Bordes, 2015).

Another interesting idea could be to label sentences with soft targets rather than

coarse classifications as either summaries or not summaries, drawing on ideas pro-

posed by Hinton, Vinyals, and Dean, 2015. The way this could work is to give sen-

tences classifications as 1 − ROUGE-L(s,H) for sentence s and set of highlights H .

The challenge would then be for the network to directly learn how good-a summary

each sentence is by reading the whole paper, rather than learning a coarse classifica-

tion. This would require training data to be in order so that the system could com-

pare sentences and encoded sections from the same document together. As Hinton,

Vinyals, and Dean, 2015 say, although this is a slightly different context, "soft tar-

gets" can transfer a huge amount of information about data that hard targets cannot

possibly get across.

50 Chapter 5. Conclusion and Evaluation

5.3.6 More Feature Engineering

Feature engineering is still an enormously popular approach to summarisation, and

could be taken further for this project such as by adding new features similar to Ab-

stractROUGE but using other evaluation metrics like ROUGE-N and ROUGE-W to

create an ensemble of AbstractROUGEs. Other evaluation metrics such as proposed

by (Cohan and Goharian, 2016) could also be used. Sentences could also be com-

pared to other parts of the paper like the title using evaluation metrics, as the title

has a particularly high salience with regard to summaries (see Section 4.1).

5.3.7 More Advanced Summary Construction After Neural Net Output

This project was more concerned with the actual network architectures used for sum-

marisation than anything else, but many authors such as Cao et al., 2015; Ren, Wei,

and Chen, 2016 mention the importance of ensuring no redundant sentences are

added to the summary, something that was not implemented in this work. This

post-processing phase could be taken further however and the sentences outputted

by a network could be altered so that they flow, do not refer to outside entities such

as citations and make a coherent summary that is more like a piece of human written

text than a set of bullet points which are largely discordant.

5.4 Project and Personal Evaluation

Project’s Most Challenging Aspect was preprocessing data into the correct form

and building the correct architectures which allowed neural methods to shine. It

took a very long time to build a system capable of outperforming a purely TF-IDF

based summariser.

Advice for Anyone Who Wants to Improve the System Make sure that you have

sorted out the format for the data that you are going to use as soon as possible, then

create the dataset and make sure all models use the same dataset. You should try as

hard as possible to avoid having to re-run any data preprocessing phases once you

have begun developing models as this will make work much faster.

What Would Be Done Differently if the Project Were to be Restarted The data

format would be defined as early as possible and the datasets created as early as

possible in the hope that preprocessing of the 10148 papers would only ever have to

take place once.

Did I Meet My Personal Development Aims? When I started this project I had

never used TensorFlow and had never coded a machine learning algorithm. I had

5.4. Project and Personal Evaluation 51

some basic experience with creating a bag-of-words based summariser for news ar-

ticles which was my only experience in NLP. I have far exceeded my aims in this

project and now know how to use TensorFlow, have a good understanding of statis-

tical NLP and can code deep learning algorithms including RNNs and convolutional

nets, but even better than this I have an intuitive understanding of how they work.

This culminated in creating a much-better-than-TF-IDF summariser which was an

aim I was determined to achieve.

53

Appendix A

Results Tables

Section ROUGE-L Score Normalized Copy/Paste Score

Title 0.336 0.04
Abstract 0.301 0.471
Conclusion 0.245 0.096
Keyphrases 0.224 0
Analysis 0.211 0
Summary 0.210 0.004
Related Work 0.208 0.038
Discussion 0.206 0.088
Results 0.205 0
Evaluation 0.201 0.003
Overview 0.198 0.002
Methods 0.193 0
Introduction 0.189 0.239
Motivation 0.176 0.007
References 0.115 0.002

TABLE A.1: The ROUGE-L and Copy/Paste Scores of each section as
plotted in Figure 4.1

54 Appendix A. Results Tables

Model CSPubSum Test (% Oracle Score) CSPubSumExt Test

SAF+F Ens 0.764 0.895
S+F Ens 0.763 0.892
FNet 0.761 0.870
Word2VecAFNet 0.746 0.897
SFNet 0.719 0.901
AbstractROUGE 0.713 0.764
SAFNet 0.692 0.906
TF-IDF 0.677 0.69
LSTM 0.652 0.847
Word2VecNet 0.601 0.779
Keyphrase Score 0.554 0.67
Title Score 0.503 0.692
DocTF-IDF 0.390 0.2

TABLE A.2: The performances of the different models as actual sum-
marisers on CSPubSum Test and in terms of Accuracy on CSPub-

SumExt Test, as shown in Figure 4.2

Model CSPubSum Test, Full Data CSPubSum Test, Low Data

FNet 0.312 0.292
SAFNet 0.284 0.281
SFNet 0.294 0.248

TABLE A.3: The performances of three different models when trained
with the extended and unextended data, as shown in Figure 4.3

Model CSPubSum Test, AbsROUGE CSPubSum Test, No AbsROUGE

FNet 0.312 0.297
SAFNet 0.284 0.284
SFNet 0.294 0.287

TABLE A.4: The performances of three different models when trained
with and without the AbstractROUGE metric, as shown in Figure 4.4

Appendix A. Results Tables 55

Feature Weights With AbsROUGE Weights Without AbsROUGE

AbstractROUGE 3.99 0
Title Score 0.323 0.286
TF-IDF 0.043 -0.065
Keyphrase Score 0.014 0.001
Section -0.102 -0.148
Sent Length -0.141 -0.032
Numeric Count -0.232 -0.290
Document TF-IDF -0.33 -0.172

TABLE A.5: Comparison of the weights assigned to each feature by
a logistic regression classifier, with and without AbstractROUGE, as

shown in Figure 4.5

57

Appendix B

Project Plan

As specified in report requirements, the Project Plan written in November 2016 is

included here.

F I N A L Y E A R P R O J E C T
!

Automatic Summarisation of Scientific
Papers

 Project Plan: 16 November 2016 - Name: Edward Collins - Supervisor: Isabelle Augenstein

Aims
• To learn about natural language processing techniques used for the automatic summarisation of text including both

extractive and generative models.
• To develop an effective method of applying summarisation techniques to scientific papers and build a system in

Python that can perform this task.
• To publish this research at a conference if successful results are obtained.

Objectives
1. Review existing literature related to the automatic summarisation of one or more documents and literature related

to sentence compression for natural language generation.
2. Develop pre-processing software that can understand which parts of a scientific paper are most relevant for

summarisation or contain the most meaningful information, so that the data used to generate summaries is in effect
distilled to the most meaningful pieces of text in the paper.

3. Develop a model that can use the preprocessed data to generate short summaries of approximately 5 sentences for a
given scientific paper.

4. Evaluate the success of the summarisation system using software such as ROUGE.
5. If successful, writeup findings into a short paper.

Deliverables
• A novel summarisation algorithm that produces good quality summaries of scientific articles.
• A fully documented and functional piece of preprocessing software which can decide on the areas with highest density

of relevant information in the papers.
• A fully documented and functional piece of software, written in Python which can generate summaries of scientific

papers.
• A fully described method of testing the software.
• A document detailing the potential applications of such a piece of software.
• A short paper detailing the findings suitable for publication.

Non-Essential Deliverables
• If time, a front-end for the summarisation system.
• If time, deploy the system to be accessed through a web browser.

Work Plan
• Project start - end of November 2016 (8 weeks): Creating small prototype and test programs to test the feasibility of

goals. Principally to test whether the training data we have is readily suitable for learning the areas of most interest in
papers or if we must find a different way to do this. Other research will be conducted into the training data in this
period to look for most commonly used words, common structures and frequently used sentences in the training
summary data.

• December 2016 - mid-February 2017 (approx. 16 weeks): Iterations consisting of researching, building and testing a
feature of the summariser and preprocessing system. Each iteration will last two weeks. Principle features to develop
and tasks to complete:

- Evaluation method to test the accuracy and validity of generated summaries against the training data.
- Preprocessor to extract features from the scientific papers.

D e p a r t m e n t o f C o m p u t e r S c i e n c e • U n i v e r s i t y C o l l e g e L o n d o n • G o w e r S t r e e t • L o n d o n W C 1 E 6 B T
!

!1

F I N A L Y E A R P R O J E C T
!

- Preprocessor to translate these features into a form suitable for machine learning.
- Research into summarisation methods before creating a different version of the summariser.
- Summariser engine to take data and create a summary, tested using the evaluation method earlier developed (this

will take up many iterations as different versions of the summariser are created and tested for their effectiveness).
• Mid-February - End of March 2017 (approx. 6 weeks) - work on final report and paper to be published. Organise all

work and make it neat and easily understandable. Add aesthetic features like a front-end to the summariser if there is
time.

Milestones
• Preprocessor to highlight areas of highly relevant information complete to reasonable standard - 16 December 2016
• Evaluation method for accuracy and validity of summaries developed - Mid-January 2017
• Interim report prepared - End of January 2017
• First summariser version working to a reasonable degree - End of January 2017
• Working summariser developed - Mid-End of February 2017
• Paper and final report written - End of March 2017

D e p a r t m e n t o f C o m p u t e r S c i e n c e • U n i v e r s i t y C o l l e g e L o n d o n • G o w e r S t r e e t • L o n d o n W C 1 E 6 B T
!

!2

61

Appendix C

Interim Report

As specified in report requirements, the Interim Report written in January 2017 is

included here.

F I N A L Y E A R P R O J E C T
!

A Supervised Approach to Extractive
Summarisation of Scientific Papers
 Interim Report: 25 January 2017 - Name: Edward Collins - Supervisor: Isabelle Augenstein

Previous Title: Automatic Summarisation of Scientific Papers

Scope Redefinement
Originally the scope of this project was fairly broad, encompassing any possible technique for automatic summarisation.
Since the project report, this scope has been narrowed to be based on extractive summarisation only, or finding suitable
sentences for a summary from the paper itself, as opposed to abstractive summarisation which would generate new
summaries.

The main reason for doing this is that extractive summaries are more useful in the context of scientific papers. This is
because summaries generated extractively are directly quotable, where as summaries generated abstractively are not and
would still require the reader to search through the paper for the relevant quote.

Progress to Date

Exploring the Data
One of the objectives described in the project plan was to develop pre-processing software that could understand which
parts of a scientific paper were most relevant for summarisation and contain the most useful data, so that summary
sentences may be chosen from there.

To achieve this, a Python program was written that compared sentences to one another, and outputted a 1 if the
sentences were the same. The comparison worked by comparing the length of the two sentences and seeing if they were
within a tolerance of one another, and also comparing the non-stopword words to see if the sentences conveyed the same
information. This approach is more robust than directly comparing sentences on all words to see if they match because it
allows for sentences that have been slightly modified or shortened by one or two words changed to still match.

Using this program, the highlight statements which were provided by the author for each paper were compared to every
sentence in the paper, which allowed discovery of whether the highlight statements had been copied and pasted from
the main paper, and if so, from which section of the paper. Doing this would show which area of the paper authors most
often copied highlight sentences from, and so show which section summary statements could be taken from. Results are
shown in Figure 1.

As would seem logical, when sentences were copied and pasted they were mostly taken from the abstract, which is a
summary of the paper in itself. However taking summary sentences from the abstract would be pointless for this system
because the abstract is already a summary. What this system needs to produce is sentences which supplement the
abstract to help increase the user’s understanding of the rest of the paper. Therefore, the sentences of the abstract can be
treated as summary statements as well, and the same technique can be applied to see whether authors copy and paste
sentences from the main paper into the abstract. Results are shown in Figure 2.

Again as would seem logical, when sentences were copied directly from the main paper text into the abstract they
usually came from the introduction, but also had a fair chance of coming from the results and discussion or conclusion
sections. Summaries tend to simplify the concepts of a research paper, so by drawing abstract sentences from the
introduction, which would attempt to explain the basic concepts, and from the results and conclusions, which would
present the findings of the paper, a logical structure to create summaries can be found.

D e p a r t m e n t o f C o m p u t e r S c i e n c e • U n i v e r s i t y C o l l e g e L o n d o n • G o w e r S t r e e t • L o n d o n W C 1 E 6 B T
!

!1

F I N A L Y E A R P R O J E C T
!

!

!

!

!

Figure 1 -From the ~10000 papers, 1954 of the highlight statements were copied and pasted from the main paper. Of those 1954,
47% of them came from the Abstract, 24% from the Introduction and approximately 20% from the Results and Discussion and
Conclusions combined.

Figure 2 -From the ~10000 papers, 5259 sentences were copied and pasted from the main paper into the abstract. 53% of these
came from the introduction, 17% from the conclusion and 15% from results and discussion.

D e p a r t m e n t o f C o m p u t e r S c i e n c e • U n i v e r s i t y C o l l e g e L o n d o n • G o w e r S t r e e t • L o n d o n W C 1 E 6 B T
!

!2

F I N A L Y E A R P R O J E C T
!

A Supervised Learning Problem
Once it was confirmed that sentences from the main paper are copied and pasted into the highlights and abstract, a
dataset that could be used to train machine learning algorithms could be generated. To do this, all of the papers were
split into their constituent sentences, and each sentence was given a label of either 1 or 0 for “summary sentence” and
“not summary sentence”. The problem is now a classification task to classify the sentences of the paper into summary
and non-summary sentences.

Each sentence had the following features associated with it:
• TF-IDF score: a measure of how much information the sentence carried
• Key Phrase score: a count of how many author defined key phrases the sentence contains
• Title score: a count of how many non-stopword words from the title each sentence contains
• Bag of Words score: a score calculated by counting the occurrence of all non-stopword words in the paper the sentence

was in and creating a score for the sentence by summing the total occurrences of each word in the sentence in the
whole paper

• Sentence length: the number of words in the sentence
• Sentence position: the section of the paper that the sentence is in

A Word2Vec model was then trained on all of the paper data, which meant that every word could be represented by a
vector of 100 numbers. Each sentence was then transformed into a vector by averaging all of the word vectors in the
sentence. Each of the features listed above was then appended to this feature vector.

Each sentence now had a representation as a vector of numbers, and a classification. By using the Python machine
learning library SciKit Learn, a logistic regression model was trained on the data which outputs the probability of a
sentence being either a summary or non-summary sentence. The precision-recall curve is shown below in Figure 3.

!

!

Figure 3 - The maximum F1 score achieved was 71% when a probability threshold of 0.38 was set as the required threshold to
classify a sentence as a summary sentence.

D e p a r t m e n t o f C o m p u t e r S c i e n c e • U n i v e r s i t y C o l l e g e L o n d o n • G o w e r S t r e e t • L o n d o n W C 1 E 6 B T
!

!3

F I N A L Y E A R P R O J E C T
!

Remaining Work
To complete the project, the classification algorithm must be improved. To do this, a deep learning technique called a
Long-Short Term Memory (LSTM) recurrent neural network will be used instead of averaging the word vectors of each
sentence to classify them. In addition other features for each sentence may be tested. Each supervised learning algorithm
will also be used to generate summaries after training. These summaries will then be evaluated using the ROUGE metric
and by human testers. Once an algorithm with a suitable ROUGE score and accuracy on the testing data is found or time
has run out (whichever comes first), the system’s code must be cleaned and prepared for submission. The final report
will also be written at this stage.

Milestones
• Logistic regression classifier fully tested and used to generate summaries - 8th February
• LSTM created and tested - 15th February
• Summariser using LSTM working - 22nd February
• Code prepared for submission - Mid-March
• Report written - Mid-April

D e p a r t m e n t o f C o m p u t e r S c i e n c e • U n i v e r s i t y C o l l e g e L o n d o n • G o w e r S t r e e t • L o n d o n W C 1 E 6 B T
!

!4

67

Appendix D

Code Listing

All code can be viewed at this repository along with guides of how the code works

and how to run it.

https://bitbucket.org/edcollins/automatic-summarisation

69

Bibliography

Abu-jbara, Amjad and Ann Arbor (2011). “Coherent Citation-Based Summarization

of Scientific Papers”. In: Computational Linguistics, pp. 500–509. URL: http://

www.aclweb.org/anthology/P/P11/P11-1051.pdf.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine

Translation By Jointly Learning To Align and Translate”. In: Iclr 2015, pp. 1–15.

ISSN: 0147-006X. DOI: 10 .1146 /annurev .neuro .26 .041002 .131047.

arXiv: 1409.0473. URL: http://arxiv.org/abs/1409.0473v3.

Baxendale, P. B. (1958). “Machine-made index for technical literature - an experi-

ment”. In: IBM Journal of Research and Development 2, pp. 354–365.

Bengio, Yoshua et al. (2003). “A Neural Probabilistic Language Model”. In: The Jour-
nal of Machine Learning Research 3, pp. 1137–1155. ISSN: 15324435. DOI: 10.1162/

153244303322533223. arXiv: arXiv:1301.3781v3.

Cao, Ziqiang et al. (2015). “Learning Summary Prior Representation for Extractive

Summarization”. In: Proceedings ACL 2015, pp. 829–833.

Chen, Berlin (2015). Recent Developments in Automatic Summarisation. Taiwan. URL:

http://berlin.csie.ntnu.edu.tw/Berlin{_}Research/Talks/

20150626-RecentDevelopmentsinAutomaticSummarization.pdf.

Chen, Danqi, Jason Bolton, and Christopher D Manning (2016). “A Thorough Exam-

ination of the CNN / Daily Mail Reading Comprehension Task”. In: Acl 2016,

pp. 2358–2367. arXiv: 1606.02858.

Chen, Qian et al. (2016). “Distraction-Based Neural Networks for Document Sum-

marization”. In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI-2016). arXiv: 1610.08462. URL: http://arxiv.org/abs/

1610.08462.

Cheng, Jianpeng and Mirella Lapata (2016). “Neural Summarization by Extracting

Sentences and Words”. In: Arxiv, pp. 484–494. arXiv: 1603.07252. URL: http:

//arxiv.org/abs/1603.07252.

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation”. In: Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734.

ISSN: 09205691. DOI: 10.3115/v1/D14-1179. arXiv: 1406.1078. URL: http:

//arxiv.org/abs/1406.1078.

http://www.aclweb.org/anthology/P/P11/P11-1051.pdf
http://www.aclweb.org/anthology/P/P11/P11-1051.pdf
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131047
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473v3
http://dx.doi.org/10.1162/153244303322533223
http://dx.doi.org/10.1162/153244303322533223
http://arxiv.org/abs/arXiv:1301.3781v3
http://berlin.csie.ntnu.edu.tw/Berlin{_}Research/Talks/20150626-Recent Developments in Automatic Summarization.pdf
http://berlin.csie.ntnu.edu.tw/Berlin{_}Research/Talks/20150626-Recent Developments in Automatic Summarization.pdf
http://arxiv.org/abs/1606.02858
http://arxiv.org/abs/1610.08462
http://arxiv.org/abs/1610.08462
http://arxiv.org/abs/1610.08462
http://arxiv.org/abs/1603.07252
http://arxiv.org/abs/1603.07252
http://arxiv.org/abs/1603.07252
http://dx.doi.org/10.3115/v1/D14-1179
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078

70 BIBLIOGRAPHY

Cohan, Arman and Nazli Goharian (2015). “Scientific Article Summarization Using

Citation-Context and Article’s Discourse Structure”. In: Conference on Empirical
Methods in Natural Language Processing September, pp. 390–400.

— (2016). “Revisiting Summarization Evaluation for Scientific Articles”. In: pp. 806–

813. arXiv: 1604.00400. URL: http://arxiv.org/abs/1604.00400.

Conroy, John M. and Dianne P. O’leary (2001). “Text summarization via hidden

Markov models”. In: SIGIR ’01 Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information retrieval January 2001,

pp. 406–407. DOI: 10.1145/383952.384042. URL: http://portal.acm.

org/citation.cfm?doid=383952.384042.

Deng, Jia et al. (2009). “ImageNet : A Large-Scale Hierarchical Image Database”. In:

pp. 2–9. ISSN: 1063-6919. DOI: 10.1109/CVPR.2009.5206848.

Denil, Misha, Alban Demiraj, and Nando De Freitas (2015). “Extraction of Salient

Sentences from Labelled Documents”. In: arXiv, pp. 1–9. arXiv: 1412.6815v2.

Dlikman, Alexander and Mark Last (2016). “Using machine learning methods and

linguistic features in single-document extractive summarization”. In: CEUR Work-
shop Proceedings 1646, pp. 1–8. ISSN: 16130073.

Edmundson, H P (1969). “New Methods in Automatic Extracting”. In: Journal of the
ACM 16.2, pp. 264–285. ISSN: 00045411. DOI: 10.1145/321510.321519. URL:

http://portal.acm.org/citation.cfm?doid=321510.321519.

Elkiss, Aaron et al. (2008). “Blind Men and Elephants: What Do Citation Summaries

Tell Us About a Research Article?” In: ISSN: 14923831.

Fang, Changjian et al. (2017). “Word-sentence co-ranking for automatic extractive

text summarization”. In: Expert Systems with Applications 72, pp. 189–195. ISSN:

09574174. DOI: 10.1016/j.eswa.2016.12.021. URL: http://linkinghub.

elsevier.com/retrieve/pii/S0957417416306959.

Gers, F.A. and J. Schmidhuber (2000). “Recurrent nets that time and count”. In: Pro-
ceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.
IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millen-
nium 1, 189–194 vol.3. ISSN: 1098-6596. DOI: 10.1109/IJCNN.2000.861302.

arXiv: arXiv : 1011 . 1669v3. URL: http : / / ieeexplore . ieee . org /

lpdocs/epic03/wrapper.htm?arnumber=861302.

Gregor, K et al. (2015). “DRAW: A Recurrent Neural Network For Image Genera-

tion”. In: arXiv preprint arXiv: . . . P. 11. arXiv: 1502.04623. URL: http://

arxiv.org/abs/1502.04623.

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”. In:

Arxiv.Org 7.3, pp. 171–180. ISSN: 1664-1078. DOI: 10 . 3389 / fpsyg . 2013 .

00124. arXiv: 1512.03385. URL: http://arxiv.org/pdf/1512.03385v1.

pdf.

Hermann, Karm Moritz et al. (2015). “Teaching Machines to Read and Compre-

hend”. In: arXiv, pp. 1–13. ISSN: 10495258. arXiv: arXiv:1506.03340v1.

http://arxiv.org/abs/1604.00400
http://arxiv.org/abs/1604.00400
http://dx.doi.org/10.1145/383952.384042
http://portal.acm.org/citation.cfm?doid=383952.384042
http://portal.acm.org/citation.cfm?doid=383952.384042
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1412.6815v2
http://dx.doi.org/10.1145/321510.321519
http://portal.acm.org/citation.cfm?doid=321510.321519
http://dx.doi.org/10.1016/j.eswa.2016.12.021
http://linkinghub.elsevier.com/retrieve/pii/S0957417416306959
http://linkinghub.elsevier.com/retrieve/pii/S0957417416306959
http://dx.doi.org/10.1109/IJCNN.2000.861302
http://arxiv.org/abs/arXiv:1011.1669v3
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=861302
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=861302
http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1502.04623
http://dx.doi.org/10.3389/fpsyg.2013.00124
http://dx.doi.org/10.3389/fpsyg.2013.00124
http://arxiv.org/abs/1512.03385
http://arxiv.org/pdf/1512.03385v1.pdf
http://arxiv.org/pdf/1512.03385v1.pdf
http://arxiv.org/abs/arXiv:1506.03340v1

BIBLIOGRAPHY 71

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean (2015). “Distilling the Knowledge in

a Neural Network”. In: NIPS 2014 Deep Learning Workshop, pp. 1–9. ISSN: 0022-

2488. DOI: 10.1063/1.4931082. arXiv: 1503.02531. URL: http://arxiv.

org/abs/1503.02531.

Hinton, Geoffrey E and Ruslan Salakhutdinov (2006). “Reducing Dimensionality of

Data with Neural Networks”. In: Science 313.July, pp. 504–507. ISSN: 0036-8075.

DOI: 10.1126/science.1127647. arXiv: 20.

Hirao, Tsutomu et al. (2015). “Summarizing a Document by Trimming the Discourse

Tree”. In: IEEE/ACM Transactions on Speech and Language Processing 23.11, pp. 2081–

2092. ISSN: 23299290. DOI: 10.1109/TASLP.2015.2465150.

Hirao, Tsutomu et al. (2017). “Enumeration of Extractive Oracle Summaries”. In:

Arxiv. arXiv: 1701.01614. URL: http://arxiv.org/abs/1701.01614.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:

Neural computation 9.8, pp. 1735–80. ISSN: 0899-7667. DOI: 10 . 1162 / neco .

1997.9.8.1735. arXiv: 1206.2944. URL: http://www.ncbi.nlm.nih.

gov/pubmed/9377276.

Jaidka, Kokil et al. (2016). “Overview of the CL-SciSumm 2016 Shared Task”. In:

CEUR Workshop Proceedings 1610, pp. 93–102. ISSN: 16130073.

Jozefowicz, Rafal et al. (2016). “Exploring the Limits of Language Modeling”. In:

arXiv:1602.02410 [cs]. arXiv: 1602.02410. URL: http://arxiv.org/abs/

1602.02410{\%}5Cnhttp://www.arxiv.org/pdf/1602.02410.pdf.

Kageback, Mikael et al. (2014). “Extractive Summarization using Continuous Vec-

tor Space Models”. In: Proceedings of the 2nd Workshop on Continuous Vector Space
Models and their Compositionality (CVSC), pp. 31–39. ISSN: 18650929. DOI: 10.

1007/978-3-642-14834-7_15. arXiv: arXiv:1506.01597v2. URL: http:

//www.aclweb.org/anthology/W14-1504.

Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom (2014). “A Convolutional

Neural Network for Modelling Sentences”. In: Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, pp. 655–665. arXiv: arXiv:

1404.2188v1. URL: http://goo.gl/EsQCuC.

Kavila, Selvani Deepthi and Y Radhika (2015). “Extractive Text Summarization Us-

ing Modified Weighing and Sentence Symmetric Feature Methods”. In: October,

pp. 33–39. ISSN: 20750161. DOI: 10.5815/ijmecs.2015.10.05.

Kim, Yoon (2014). “Convolutional Neural Networks for Sentence Classification”. In:

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP 2014), pp. 1746–1751. ISSN: 10709908. DOI: 10.1109/LSP.2014.

2325781. arXiv: arXiv:1408.5882v1. URL: http://emnlp2014.org/

papers/pdf/EMNLP2014181.pdf.

http://dx.doi.org/10.1063/1.4931082
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://dx.doi.org/10.1126/science.1127647
http://arxiv.org/abs/20
http://dx.doi.org/10.1109/TASLP.2015.2465150
http://arxiv.org/abs/1701.01614
http://arxiv.org/abs/1701.01614
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1206.2944
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1602.02410{\%}5Cnhttp://www.arxiv.org/pdf/1602.02410.pdf
http://arxiv.org/abs/1602.02410{\%}5Cnhttp://www.arxiv.org/pdf/1602.02410.pdf
http://dx.doi.org/10.1007/978-3-642-14834-7_15
http://dx.doi.org/10.1007/978-3-642-14834-7_15
http://arxiv.org/abs/arXiv:1506.01597v2
http://www.aclweb.org/anthology/W14-1504
http://www.aclweb.org/anthology/W14-1504
http://arxiv.org/abs/arXiv:1404.2188v1
http://arxiv.org/abs/arXiv:1404.2188v1
http://goo.gl/EsQCuC
http://dx.doi.org/10.5815/ijmecs.2015.10.05
http://dx.doi.org/10.1109/LSP.2014.2325781
http://dx.doi.org/10.1109/LSP.2014.2325781
http://arxiv.org/abs/arXiv:1408.5882v1
http://emnlp2014.org/papers/pdf/EMNLP2014181.pdf
http://emnlp2014.org/papers/pdf/EMNLP2014181.pdf

72 BIBLIOGRAPHY

Kobayashi, Hayato, Masaki Yatsuka, and Noguchi Taichi (2015). “Summarization

Based on Embedding Distributions”. In: Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP) September, pp. 1984–

1989.

Kong, Lingpeng et al. (2017). “DRAGNN: A Transition-based Framework for Dy-

namically Connected Neural Networks”. In: Arxiv. arXiv: 1703.04474. URL:

http://arxiv.org/abs/1703.04474.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Classifi-

cation with Deep Convolutional Neural Networks”. In: Advances In Neural Infor-
mation Processing Systems, pp. 1–9. ISSN: 10495258. DOI: http://dx.doi.org/

10.1016/j.protcy.2014.09.007. arXiv: 1102.0183.

Kupiec, Julian, Jan Pedersen, and Francine Chen (1995). “A Trainable Document

Summarizer”. In: International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 68–73. ISSN: 01635840. DOI: 10.1145/215206.

215333. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.41.1161.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: Na-
ture 521.7553, pp. 436–444. ISSN: 0028-0836. DOI: 10.1038/nature14539. arXiv:

arXiv:1312.6184v5. URL: http://dx.doi.org/10.1038/nature14539.

Liakata, Maria et al. (2010). “Corpora for the conceptualisation and zoning of scien-

tific papers”. In: Proceedings of LREC, pp. 2054–2061. URL: http://www.abdn.

ac.uk/{~}csc323/lrecAZCoreSCfinal.pdf.

Lin, C Y (2004). “Rouge: A package for automatic evaluation of summaries”. In:

Proceedings of the workshop on text summarization branches out (WAS 2004) 1, pp. 25–

26. ISSN: 00036951.

Lin, Chin-Yew and Eduard Hovy (1997). “Identifying Topics by Position”. In:

Litvak, Marina, Mark Last, and Menahem Friedman (2010). “A new Approach to

Improving Multilingual Summarization using a Genetic Algorithm”. In: 48th An-
nual Meeting of the Association for Computational Linguistics July, pp. 927–936.

Litvak, Marina et al. (2016). “MUSEEC: A Multilingual Text Summarization Tool”.

In: Proceedings of ACL-2016 System Demonstrations, pp. 73–78. URL: http://

anthology.aclweb.org/P/P16/P16-4013.

Luhn, H. P. (1958). “The Automatic Creation of Literature Abstracts”. In: IBM Journal
of Research and Development 2.2, pp. 159–165. ISSN: 0018-8646. DOI: 10.1147/rd.

22.0159.

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (2015). “Effective

Approaches to Attention-based Neural Machine Translation”. In: Emnlp Septem-

ber, p. 11. ISSN: 10495258. DOI: 10.18653/v1/D15-1166. arXiv: 1508.04025.

URL: http://arxiv.org/abs/1508.04025.

http://arxiv.org/abs/1703.04474
http://arxiv.org/abs/1703.04474
http://dx.doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
http://arxiv.org/abs/1102.0183
http://dx.doi.org/10.1145/215206.215333
http://dx.doi.org/10.1145/215206.215333
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1161
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1161
http://dx.doi.org/10.1038/nature14539
http://arxiv.org/abs/arXiv:1312.6184v5
http://dx.doi.org/10.1038/nature14539
http://www.abdn.ac.uk/{~}csc323/lrecAZCoreSCfinal.pdf
http://www.abdn.ac.uk/{~}csc323/lrecAZCoreSCfinal.pdf
http://anthology.aclweb.org/P/P16/P16-4013
http://anthology.aclweb.org/P/P16/P16-4013
http://dx.doi.org/10.1147/rd.22.0159
http://dx.doi.org/10.1147/rd.22.0159
http://dx.doi.org/10.18653/v1/D15-1166
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025

BIBLIOGRAPHY 73

Luong, Minh-Thang et al. (2016). “Multi-task Sequence to Sequence Learning”. In:

Iclr c, pp. 1–9. arXiv: 1511.06114. URL: http://arxiv.org/abs/1511.

06114.

Mani, Inderjeet (2001). Automatic summarization. Vol. 3. John Benjamins Publishing.

Mihalcea, Rada and Hakan Ceylan (2007). “Explorations in Automatic Book Sum-

marization”. In: Computational Linguistics June, pp. 380–389. URL: http://www.

aclweb.org/anthology/D/D07/D07-1040http://www.aclweb.org/

anthology/D07-1040.

Mihalcea, Rada and Paul Tarau (2004). “TextRank: Bringing order into texts”. In: Pro-
ceedings of EMNLP 85, pp. 404–411. ISSN: 0256307X. DOI: 10.3115/1219044.

1219064. arXiv: arXiv:1011.1669v3. URL: http://acl.ldc.upenn.

edu/acl2004/emnlp/pdf/Mihalcea.pdf.

Mikolov, Tomas et al. (2013). “Distributed Representations of Words and Phrases and

their Compositionality”. In: Nips, pp. 1–9. ISSN: 10495258. DOI: 10.1162/jmlr.

2003.3.4-5.951. arXiv: 1310.4546.

Nallapati, Ramesh, Feifei Zhai, and Bowen Zhou (2016). “SummaRuNNer: A Re-

current Neural Network based Sequence Model for Extractive Summarization of

Documents”. In: Arxiv. arXiv: 1611.04230. URL: https://arxiv.org/pdf/

1611.04230.pdf.

Nallapati, Ramesh, Bowen Zhou, and Mingbo Ma (2016). “Classify or Select: Neural

Architectures for Extractive Document Summarization”. In: Arxiv. arXiv: 1611.

04244. URL: http://arxiv.org/abs/1611.04244.

Nallapati, Ramesh et al. (2016). “Abstractive Text Summarization Using Sequence-

to-Sequence RNNs and Beyond”. In: Proceedings of CoNLL, pp. 280–290. arXiv:

1602.06023. URL: http://arxiv.org/abs/1602.06023.

Nomoto, Tadashi and Yuji Matsumoto (2001). “A new approach to unsupervised

text summarization”. In: Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval - SIGIR ’01, pp. 26–

34. ISSN: 01635840. DOI: 10.1145/383952.383956. URL: http://dl.acm.

org/citation.cfm?id=383952.383956.

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel Re-

current Neural Networks”. In: International Conference on Machine Learning (ICML).
arXiv: 1601.06759. URL: http://arxiv.org/abs/1601.06759.

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014). “GloVe:

Global Vectors for Word Representation”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, pp. 1532–1543. ISSN: 10495258.

DOI: 10.3115/v1/D14-1162. arXiv: 1504.06654.

Qazvinian, Vahed et al. (2013). “Generating extractive summaries of scientific paradigms”.

In: Journal of Artificial Intelligence Research 46, pp. 165–201. ISSN: 10769757. DOI:

10.1613/jair.3732. arXiv: 1402.0556.

http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1511.06114
http://www.aclweb.org/anthology/D/D07/D07-1040 http://www.aclweb.org/anthology/D07-1040
http://www.aclweb.org/anthology/D/D07/D07-1040 http://www.aclweb.org/anthology/D07-1040
http://www.aclweb.org/anthology/D/D07/D07-1040 http://www.aclweb.org/anthology/D07-1040
http://dx.doi.org/10.3115/1219044.1219064
http://dx.doi.org/10.3115/1219044.1219064
http://arxiv.org/abs/arXiv:1011.1669v3
http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Mihalcea.pdf
http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Mihalcea.pdf
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.951
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.951
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1611.04230
https://arxiv.org/pdf/1611.04230.pdf
https://arxiv.org/pdf/1611.04230.pdf
http://arxiv.org/abs/1611.04244
http://arxiv.org/abs/1611.04244
http://arxiv.org/abs/1611.04244
http://arxiv.org/abs/1602.06023
http://arxiv.org/abs/1602.06023
http://dx.doi.org/10.1145/383952.383956
http://dl.acm.org/citation.cfm?id=383952.383956
http://dl.acm.org/citation.cfm?id=383952.383956
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1601.06759
http://dx.doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1504.06654
http://dx.doi.org/10.1613/jair.3732
http://arxiv.org/abs/1402.0556

74 BIBLIOGRAPHY

Ramos, Juan, Juramos Eden, and Rutgers Edu (2003). “Using TF-IDF to Determine

Word Relevance in Document Queries”. In: Processing. DOI: 10.1.1.121.1424.

URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.121.1424{\&}rep=rep1{\&}type=pdf.

Ren, Pengjie, Furu Wei, and Zhumin Chen (2016). “A Redundancy-Aware Sentence

Regression Framework for Extractive Summarization”. In: pp. 33–43. URL: https:

//www.aclweb.org/anthology/C/C16/C16-1004.pdf.

Ronzano, Francesco and Horacio Saggion (2016). “Knowledge Extraction and Mod-

eling from Scientific Publications”. In:

Saggion, Horacio, Ahmed Abura’ed, and Francesco Ronzano (2016). “Trainable citation-

enhanced summarization of scientific articles”. In: CEUR Workshop Proceedings
1610, pp. 175–186. ISSN: 16130073.

Salton, G., a. Wong, and C. S. Yang (1975). “A vector space model for automatic

indexing”. In: Communications of the ACM 18.11, pp. 613–620. ISSN: 00010782. DOI:

10.1145/361219.361220.

Salton, Gerard et al. (1996). “Automatic analysis, theme generation, and summariza-

tion of machine-readable texts”. In: Information retrieval and hypertext. Springer,

pp. 51–73.

Socher, Richard et al. (2011). “Semi-Supervised Recursive Autoencoders for Predict-

ing Sentiment Distributions”. In: EMNLP 2011 - Conference on Empirical Meth-
ods in Natural Language Processing, Proceedings of the Conference ii, pp. 151–161.

ISSN: 1937284115. DOI: 10.1.1.224.9432. URL: http://dl.acm.org/

citation.cfm?id=2145450.

Spärck Jones, Karen (2007). “Automatic summarising: The state of the art”. In: In-
formation Processing and Management 43.6, pp. 1449–1481. ISSN: 03064573. DOI:

10.1016/j.ipm.2007.03.009.

Srivastava, Nitish et al. (2014). “Dropout: A Simple Way to Prevent Neural Networks

from Overfitting”. In: Journal of Machine Learning Research 15, pp. 1929–1958. ISSN:

15337928. DOI: 10.1214/12-AOS1000. arXiv: 1102.4807.

Szegedy, Christian et al. (2014). “Going Deeper with Convolutions”. In: ISSN: 10636919.

DOI: 10.1109/CVPR.2015.7298594. arXiv: 1409.4842.

Teufel, S., A. Siddharthan, and C. Batchelor (2009). “Towards discipline-independent

Argumentative Zoning: Evidence from chemistry and computational linguis-

tics”. In: EMNLP 2009 - Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing: A Meeting of SIGDAT, a Special Interest Group of ACL,
Held in Conjunction with ACL-IJCNLP 2009 August, pp. 1493–1502. URL: https:

//www.aclweb.org/anthology/D09-1155.

Teufel, Simone and Marc Moens (2002). “Summarizing Scientific Articles: Experi-

ments with Relevance and Rhetorical Status”. In: Computational Linguistics 28.4,

pp. 409–445. ISSN: 0891-2017. DOI: 10.1162/089120102762671936. URL: http:

//www.aclweb.org/anthology/J02-4002.

http://dx.doi.org/10.1.1.121.1424
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424{\&}rep=rep1{\&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424{\&}rep=rep1{\&}type=pdf
https://www.aclweb.org/anthology/C/C16/C16-1004.pdf
https://www.aclweb.org/anthology/C/C16/C16-1004.pdf
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1.1.224.9432
http://dl.acm.org/citation.cfm?id=2145450
http://dl.acm.org/citation.cfm?id=2145450
http://dx.doi.org/10.1016/j.ipm.2007.03.009
http://dx.doi.org/10.1214/12-AOS1000
http://arxiv.org/abs/1102.4807
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1409.4842
https://www.aclweb.org/anthology/D09-1155
https://www.aclweb.org/anthology/D09-1155
http://dx.doi.org/10.1162/089120102762671936
http://www.aclweb.org/anthology/J02-4002
http://www.aclweb.org/anthology/J02-4002

BIBLIOGRAPHY 75

“The Rise of Open Access” (2012). In: Science 342.October, pp. 12–14. URL: http:

//science.sciencemag.org/content/342/6154/58/tab-pdf.

Thomas, Stefan et al. (2015). “ExB Text Summarizer”. In: 2014. URL: http://www.

aclweb.org/anthology/W15-4637.

Visser, W. T. and M .B. Wieling (2009). “Sentence-based Summarization of Scien-

tific Documents”. In: pp. 1–18. DOI: 10.1.1.103/4925. URL: http://www.

martijnwieling.nl/files/wielingvisser05automaticsummarization.

pdf.

Wan, Xiaojun and Jianmin Zhang (2014). “CTSUM : Extracting More Certain Sum-

maries”. In: Acm Sigir, pp. 787–796. DOI: 10.1145/2600428.2609559.

Weston, Jason, Sumit Chopra, and Antoine Bordes (2015). “Memory Networks”. In:

International Conference on Learning Representations, pp. 1–14. ISSN: 1098-7576. DOI:

v0. arXiv: 1410.3916v10. URL: http://arxiv.org/abs/1410.3916.

Xu, Kelvin et al. (2016). “Show, Attend and Tell: Neural Image Caption Generation

with Visual Attention”. In: IEEE Transactions on Neural Networks 5.2, pp. 157–166.

ISSN: 19410093. DOI: 10.1109/72.279181. arXiv: arXiv:1211.5063v2.

Yousefi-Azar, Mahmood and Len Hamey (2017). “Text summarization using unsu-

pervised deep learning”. In: Expert Systems with Applications 68, pp. 93–105. ISSN:

09574174. DOI: 10.1016/j.eswa.2016.10.017. URL: http://dx.doi.

org/10.1016/j.eswa.2016.10.017.

Zeiler, Matthew D. and Rob Fergus (2014). “Visualizing and Understanding Convo-

lutional Networks”. In: Computer Vision–ECCV 2014 8689, pp. 818–833. ISSN: 978-

3-319-10589-5. DOI: 10.1007/978-3-319-10590-1_53. arXiv: 1311.2901.

URL: http://link.springer.com/10.1007/978-3-319-10590-1{_

}53{\%}5Cnhttp://arxiv.org/abs/1311.2901{\%}5Cnpapers3:

//publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291.

http://science.sciencemag.org/content/342/6154/58/tab-pdf
http://science.sciencemag.org/content/342/6154/58/tab-pdf
http://www.aclweb.org/anthology/W15-4637
http://www.aclweb.org/anthology/W15-4637
http://dx.doi.org/10.1.1.103/4925
http://www.martijnwieling.nl/files/wielingvisser05automaticsummarization.pdf
http://www.martijnwieling.nl/files/wielingvisser05automaticsummarization.pdf
http://www.martijnwieling.nl/files/wielingvisser05automaticsummarization.pdf
http://dx.doi.org/10.1145/2600428.2609559
http://dx.doi.org/v0
http://arxiv.org/abs/1410.3916v10
http://arxiv.org/abs/1410.3916
http://dx.doi.org/10.1109/72.279181
http://arxiv.org/abs/arXiv:1211.5063v2
http://dx.doi.org/10.1016/j.eswa.2016.10.017
http://dx.doi.org/10.1016/j.eswa.2016.10.017
http://dx.doi.org/10.1016/j.eswa.2016.10.017
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1311.2901
http://link.springer.com/10.1007/978-3-319-10590-1{_}53{\%}5Cnhttp://arxiv.org/abs/1311.2901{\%}5Cnpapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291
http://link.springer.com/10.1007/978-3-319-10590-1{_}53{\%}5Cnhttp://arxiv.org/abs/1311.2901{\%}5Cnpapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291
http://link.springer.com/10.1007/978-3-319-10590-1{_}53{\%}5Cnhttp://arxiv.org/abs/1311.2901{\%}5Cnpapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291

	Abstract
	Acknowledgements
	Introduction
	Motivating Summarisation
	Challenges of Automatically Summarising Papers
	Project Objectives and Contributions
	Personal Aims
	Thesis Guide

	Background
	Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Networks

	Word Embeddings
	The State of the Art in Extractive Summarisation
	RNN-based
	CNN-based
	Other Deep Learning Methods
	Feature-based Methods

	Summarising Scientific Papers
	Summarisation Datasets

	Method
	Dataset and Problem Formulation
	Problem Formulation
	Creation of the Training and Testing Data

	ROUGE Metrics
	ROUGE-L
	HighlightROUGE
	AbstractROUGE

	Sentence Encoding
	Feature Engineering
	Summariser Architectures

	Results and Analysis
	Most Relevant Sections to a Summary
	Model Performance and Error Analysis
	Summary Quality and Comparison to Other Work
	Effect of Using ROUGE-L to Generate More Data
	Effect of AbstractROUGE on Summariser Performance
	Feature Analysis

	Conclusion and Evaluation
	Summary of Approach and Achievements
	Results Evaluation
	Main Weaknesses
	Areas for Improvement

	Future Work
	Making Use of Citations
	Adding Attention
	Experimenting with Sentence Encoding
	Encoding Larger Sections of the Documents
	Format of the Training Data
	More Feature Engineering
	More Advanced Summary Construction After Neural Net Output

	Project and Personal Evaluation

	Results Tables
	Project Plan
	Interim Report
	Code Listing
	Bibliography

