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Abstract

The Code Suggestion features of modern IDEs are invaluable productivity tools for

programmers. While they tend to be reasonably functional in statically-typed lan-

guages, they offer little assistance when it comes to writing idiomatic code, lack

functionality in dynamic programming languages and focus on single tokens rather

than sequences. Recent work has shown that NLP language models can be suc-

cessfully used to improve code suggestion systems by learning from repositories of

natural code. The aim of this project was to investigate whether the performance

of LSTM neural language models on code suggestion could be improved through

the addition of neural attention mechanisms, designed to improve learning of long-

range dependencies. It was found, on a new large Python corpus developed for

this work, that Python code exhibits very long-range dependencies relating to ref-

erences to previously declared identifiers. While standard neural language models

were found to be very effective at suggesting syntax and structure, they struggled

with these identifier references. The addition of attention mechanisms significantly

improved the models ability to suggest identifier references. Standard attention

models were found to outperform LSTMs in perplexity and in suggestion accuracy

by up to 4 points, and 6 percentage points respectively. A novel model that allowed

for multiple filtered attention mechanisms was also developed to more efficiently

deal with the long-range dependencies in source code. The novel model surpassed

the performance of a standard attention model with the same amount of memory by

2.5 perplexity points and 3 percentage points in suggestion accuracy. It also outper-

formed an attention model with more than double the attention memory while also

being more interpretable.
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Chapter 1

Introduction

This chapter introduces the problem of code suggestion, explains why it is amenable

to machine learning and then states the aims and key contributions of the disserta-

tion.

1.1 Code Suggestion
As part of their task of developing software, programmers are required to combine

the rich functionality offered by numerous frameworks and libraries with their own

project’s code. These projects may themselves be very large, potentially having

evolved over many years with the contributions of numerous other programmers.

The numbers of modules, classes and functions that programmers have access to

can easily reach into the thousands and they often need to be combined in specific

patterns or sequences in order to achieve the desired functionality. In order to help

deal with the inherent complexity of software development, programmers tend to

rely heavily on the tools provided by their IDEs. One of the most useful tools, pro-

vided in some shape or form by every modern IDE, is the code completion or code

suggestion system. Code suggestion refers to the recommendation of one or more

tokens1 to extend a given sequence of complete tokens. Code completion on the

other hand refers to the slightly different problem of recommending a completion

to a partial token given a sequence of complete tokens and a partial token.

Existing code suggestion and completion engines are built using hand-coded

1A token is a sequence of characters that constitute a single logical or lexical unit
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heuristics. Nevertheless, they have evolved over many years to become quite ef-

fective, particularly at code completion. This is especially true when applied to

statically-typed languages where the type information can be leveraged to narrow

the list of recommendations. This is not quite the case in dynamically typed lan-

guages such as Python. Figures 1.1 and 1.2 highlight some of these differences in

capabilities using examples of suggestions made by the IntelliJ IDE for Java code

and suggestions made by the same IDE on similar Python code respectively. It

seems that the difference in capability is both due to a lack of type information in

dynamic languages as well as possibly less time and effort spent on the engines for

dynamic languages (as evidenced particularly by the first Python example, where

it would be relatively easy to think of a heuristic to make a sensible recommenda-

tion). Existing solutions also tend to recommend single tokens rather than entire

code snippets. Many IDEs have so called “live-template” features to partially ad-

dress this, but these templates are fairly rigid, determined manually by the IDE cre-

ators or by developers themselves and may not necessarily reflect common practice

or idiomatic code.

1.2 A machine learning perspective

A machine learning based alternative to the hard-coded heuristics was first pro-

posed by Hindle et al [1] in 2012, who noted that “code, despite being written in

an artificial language [...] is a natural product of human effort.” By exploiting the

predictable statistical properties they found in Java source code, they successfully

applied machine learning techniques from the Natural Language Processing (NLP)

community to build a code suggestion system. Such systems are capable of auto-

matically learning language syntax, API methods and common patterns based on

the analysis of source code written by actual programmers. The systems therefore

work entirely with idiomatic source code, that is, “code written in a manner that

other experienced developers find natural” [2].

Subsequent to the work of Hindle et al., who used fairly simple n-gram lan-

guage models, the NLP community has moved on to so-called deep learning mod-
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Figure 1.1: Java code completion recommendations from the IntelliJ IDE

els, spurred on by their tremendous success in language modelling with neural lan-

guage models [3, 4, 5], machine translation [6] and speech recognition [7]. These

models are based on artificial neural networks that were first introduced in the

late ’50s [8], but have enjoyed a recent resurgence due to the availability of large

datasets along with the computing power necessary to exploit them in the form of

GPUs. More recently, attention mechanisms, which are a form of memory, have

been added to the deep learning mix in NLP. These mechanisms equip models with

an improved ability to deal with long-range dependencies, which occur when there

are interactions that are many steps apart in an input sequence. It was hypothesised

by Dam et al. [9] that programming language source code exhibits such long-range
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Figure 1.2: Python code completion recommendations from the IntelliJ IDE
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dependencies.

The task of code suggestion is particularly ripe for exploitation by machine

learning because of the availability of huge datasets on public source code reposito-

ries like Github. Many of the popular open-source projects on Github have contri-

butions from a large numbers of experienced developers. The scrutiny in the form of

pull requests and reviews and level of testing that occurs on many of these projects

suggests that they contain very high quality code.

In short, the availability of large volumes of high-quality code, coupled with

the inherent predictability of natural source code lends itself very well to modern

deep learning techniques.

1.3 Aims, Contributions and Key Results
The primary aim of this work was to investigate whether neural attention mecha-

nisms could be leveraged to deal with the long term dependencies in source code,

thereby improving the performance of neural language models on the task of code

suggestion. This aim can be broken down into the following key research questions.

• How effective are current deep neural language models on the task of code

suggestion when applied to a dynamic programming language?

• Do neural attention mechanisms improve the ability of language models to

deal with the long-range dependencies in source code?

• Can the long-range dependencies in source code be identified?

• Can attention mechanisms be adapted to better suit the particular dependen-

cies in source code?

In order to answer these questions, a corpus of source code written in a dy-

namic programming language was required. As none were available from previous

work, a contribution of this project was the creation of a new Python source code

corpus. This corpus will be made available for future work and is discussed further

in chapter 4.
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An analysis of the corpus revealed that the majority of long-range dependen-

cies in source code come from identifier references (tokens that refer to a previously

declared identifier). It was hypothesised that these are difficult for existing language

models to deal with and that focussing on improving a model’s ability to deal with

identifier references would provide the largest return in terms of suggestion accu-

racy. In this light, a new attention mechanism that is particularly well suited to the

long range dependencies in source code was developed and is discussed in chapter

5.

Key findings of this work were that deep neural language models were very

well suited to modelling programming languages and significantly outperformed

the older models used in previous work. In particular, they were very effective at

learning source code syntax and structure but struggled with long-range dependen-

cies found in identifier references. The addition of standard attention mechanisms

for language modelling significantly improved the performance of the models and

led to a 6 percentage point improvement in suggestion accuracy. Finally, by fo-

cussing on the long-range dependencies found in source code, a novel attention

model developed in this work outperformed the standard attention model, including

one with more than double the memory available to it. The new model was also

easier to interpret.

1.4 Outline
Chapter 2 describes the background in language modelling and deep learning nec-

essary to understand the contributions of this dissertation. Chapter 3 provides a

literature review of previous related work done in code suggestion using machine

learning. Chapter 4 describes the Python corpus developed for this work. Chapter

5 goes on to extend current state-of-the-art attention mechanisms to suit the ap-

plication to code suggestion. This new approach is evaluated alongside standard

attention mechanisms as well as various baselines used in previous work in Chapter

6 before concluding.



Chapter 2

Background

This chapter describes the background knowledge in both n-gram and neural lan-

guage modelling necessary to understand its application to code suggestion. Section

2.1 provides a short overview of n-gram language models, while section 2.2 moves

on to deep learning, neural language models and the practical techniques used to

train these powerful models on large datasets.

A language model, from the field of Natural Language Processing (NLP), is

used to measure the probability of observing some sequence of tokens in a language.

For example, for the sequence S = a1,a2, ...,an, the joint probability of S is given

by equation 2.1, where the individual terms are estimated from a corpus of written

or spoken language.

P(S) = P(a1) ·
n

∏
t=2

P(at |at−1, ...,a1) (2.1)

2.1 N-gram Language Models
A common form of language model which is both easy to train and to use is the

n-gram model [10]. This model makes the (unrealistic) assumption that language

follows the Markov property. The probability of occurrence of a particular token

is conditionally independent of all preceding tokens, except for a fixed prefix of

length n-1. For example, using a 4-gram model, the terms that make up the joint

probability of observing S, are approximated as follows: P(at |at−1,at−2, ...,a1) ≈
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P(at |at−1,at−2,at−3).

The simplest, maximum likelihood estimates, of the probabilities in an n-gram

model are obtained by counting observed token sequences. For example, the es-

timate of the probability P(a4|a3,a2,a1) is P(a4|a3,a2,a1) =
#(a1 a2 a3 a4)

#(a1 a2 a3)
where

#(a1, ..,an) refers to the number of times the n-gram (sequence of n tokens) occured

in the training corpus.

In practice, the procedure is complicated by the fact that certain token se-

quences may not occur in the model’s training corpus, but may reasonably occur in

some other corpus against which the model is evaluated. Smoothing is used to ad-

dress this by combining Maximum A Posteriori estimation (incorporation of a prior

distribution) and interpolation with lower-order estimates [11]. Popular techniques

include the simple but effective Laplace [12] or “add-one” smoothing, which uses a

Dirichlet prior that effectively adds one to every count. A more advanced technique

called Kneser-Ney [13] smoothing, which uses interpolation, is also popular, along

with a practically useful modification called Modified Kneser-Ney, introduced by

Chen and Goodman [14].

2.2 Deep Learning and Neural language models
Recently, the best performing language models in NLP have been based on so called

deep neural networks, in particular the Recurrent Neural Network (RNN). A neu-

ral language model directly estimates each term in the probability distribution of

equation 2.1, without imposing a Markovian assumption. The models are able to

capture long-term dependencies in token sequences through the use of memory. In

order to understand these models, the rest of this section covers the development

of RNN language models, starting with the most basic form of neural network and

building up to the current state-of-the-art language models with neural attention

mechanisms.

2.2.1 Neural networks

Neural networks have been in existance since the ’50s when Rosenblatt introduced

the first Perceptron model [8], loosely modelled on neurons found in the mammalian
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Figure 2.1: A basic Perceptron unit, also represented in vector form where x = [x1...xn] and
w = [w1...wn]

brain. As seen in Figure 2.1, the Perceptron can be modelled as a simple unit that

takes in n distinct inputs (or an n-dimensional vector), computes a weighted sum

of the inputs and applies an activation function ( f ) to the result to obtain the unit’s

output [15]. By optimising the weights w1, ...,wn, the unit can be used to learn a

linear function that separates its input data into two classes. While the traditional

activation function was a threshold function, modern implementations use smooth,

non-linear, differentiable activation functions such as the logistic sigmoid (equation

2.2), hyperbolic tangent or rectifier (equation 2.3). 1

sigmoid(x) =
1

1+ e−x (2.2)

rectifier(x) = max(0,x) (2.3)

Multiple Perceptron units can be combined to form a Multi-Layer Perceptron

(MLP) also known as a feed-forward neural network. These consist of layers of

units with the outputs of each unit connected to the input of every unit in the next

layer. An example of a 3-layer feed-forward network, used for classification of a

4-dimensional input (x) into one of two categories (y), is illustrated in Figure 2.2.

A more succinct vector representation is illustrated on the right of the figure, which

will be the preferred form of illustration going forward. Finally, a matrix-vector

1The rectifier function presented here is not differentiable at exactly 0, but this fact can often be
safely ignored in practice and it has been found to be effective in many applications. [16]
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Figure 2.2: A 3-layer feed-forward neural network.

equation is presented in which the weights between the input and first hidden layer

form a 5x4 parameter matrix W1. Similarly, the weights between the hidden layers

form the 4x5 matrix W2 and the final set of weights, the 2x4 matrix W3. The function

f represents the activation function used in the units, applied in a point-wise fashion

to its vector input.

Training neural networks involves simultaneous optimisation of the numerous

weight parameters in order to minimise some loss function. The loss function quan-

tifies the cumulative error made by the network, or the difference between the net-

work’s final output and the correct target for each training example in a supervised

learning context.

A first-order, iterative optimisation algorithm called Gradient Descent is most

commonly used to find a local minimum of the loss function. The algorithm updates

each weight parameter in the direction of steepest descent along the loss function,

represented by the negative partial derivative of the loss function with respect to that

weight.

The partial derivatives themselves are calculated using the Backpropagation

algorithm [17]. As seen in Figure 2.2, a neural network can be represented as a set

of nested functions. The Backpropagation algorithm is then essentially the repeated

application of the chain rule to compute the derivative of the final loss function with

respect to each weight.

Gradient Descent requires the calculation of the loss over the entire training set
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Figure 2.3: A basic RNN depicting the recurrent connection of an RNN cell

before updating any weights. For this reason, Stochastic Gradient Descent (SGD)

is preferred in practice, where the loss for one, or a small mini-batch of (random)

training examples are calculated and used to update the weights. Since the updates

in SGD are estimates, they are scaled down by a learning rate, which has been found

to reduce the chance of overshooting local minimums of the loss function [18].

2.2.2 Recurrent neural networks

Recurrent Neural Networks (RNNs) are neural networks that contain cyclic connec-

tions between units. These models are useful when the input data has an inherent

sequential nature, such that the output of a particular unit may be influenced by the

computation done on previous inputs in the sequence. They are therefore partic-

ularly useful in modelling the sequential nature of natural language. One way to

think about RNNs is that they contain some internal memory representing the infor-

mation captured so far as they process an input sequence. This idea is made more

explicit when RNNs are combined with Long Short-Term Memory cells (LSTMs).

A simple RNN in vector form is depicted in Figure 2.3. The input vector at step t

in the input sequence is denoted xt, the output vector yt and the recurrent state or

“memory” vector which feeds back into the network and is used in the calculation

of the next step is denoted ht (ht is also often referred to as the hidden state)

The calculations applied inside the RNN cell to the input and previous hidden

state in order to derive the current output and hidden state are shown in equations 2.4
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and 2.5. The matrices Wi, Wh and Wo represent a collection of weights, analogous to

the W matrices of Figure 2.2 and f is once again a piecewise non-linear activation

function. Note that the calculation of the output yt at any given step t depends on

the recurrent state ht−1. The recurrent state therefore captures relevant information

contained earlier in the input sequence and can therefore be thought of as a simple

form of memory.

ht = f(Wi ·xt +Wh ·ht−1) (2.4)

yt = f(Wo ·ht) (2.5)

SGD remains the most common method used to train RNNs in conjunction

with a variation of the backpropagation algorithm called Backpropagation Through

Time (BPTT) [19]. The network is unrolled to a fixed length, either the maxi-

mum length of possible input sequences, or some smaller fixed length in the case of

Truncated BPTT. An example of an RNN unrolled 3 steps is depicted in Figure 2.4.

Unrolling allows gradient information to propagate backwards through the network.

For example, the gradient of the loss at step t +1 can propagate back to step t, t−1

and further.

Figure 2.4 also shows how RNNs can be stacked in layers to form a deep

network. The output of one layer becomes the input to the next layer. Later layers

tend to learn more abstract representations of the input sequence or may operate on

different time scales [20].

RNNs can in theory learn long-range dependencies in sequences, which are

interactions between inputs that are many steps apart. In practice, however, it often

turns out that they struggle to do so because of the vanishing gradients problem [21].

This is a result of the common non-linear activation functions having gradients with

absolute value less than one. The use of backpropagation to compute gradients in

an n-step network, results in up to n multiplications of these small gradient values

for the error propagation from the last to the first step. The error signal, represented

by the gradient, therefore decreases exponentially with n, resulting in very small
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Figure 2.4: 3 steps of an unrolled RNN on which the BPTT algorithm can be run

(often negligible) updates to the parameters in earlier steps.

2.2.3 Long Short-Term Memory (LSTM) cells

LSTM cells were introduced by Hochreiter and Schmidhuber [22] in order to al-

leviate the vanishing gradients problem suffered by standard RNNs. These cells

introduce gating mechanisms that control access to an internal memory represen-

tation. By doing so, they are able to learn long range dependencies by protecting

important parts of their memory from being overwritten. The gates also help to

preserve the error signal, allowing it to propagate much further back in time. The

equations governing the output and hidden state vectors of an LSTM are shown in

equations 2.6 to 2.11 and the important components of the LSTM are illustrated in

Figure 2.5.



2.2. Deep Learning and Neural language models 21

Figure 2.5: An LSTM cell showing the flow of data to the cell memory and out of the cell,
controlled by the 3 gates i, f and o

i = σ(xtW i
x +ht−1W i

h) (2.6)

f = σ(xtW f
x +ht−1W f

h ) (2.7)

o = σ(xtW f
x +ht−1W f

h ) (2.8)

g = tanh(xtW g
x +ht−1W g

h ) (2.9)

ct = ct−1� f+g� i (2.10)

ht = tanh(ct)�o (2.11)

The 3 gates i, f and o are are calculated based on the current input and the pre-

vious recurrent state, using the same equation with different parameter matrices W .

The sigmoid function σ ensures that the gates are vectors with elements between 0

and 1 (and are therefore smooth rather than digital gates). By taking the element-

wise product (�) of i with the transformed input g, the input gate, i, effectively

controls how much of the current input is used to update the cell memory (ct). The

forget gate controls how much of the previous cell memory (ct−1) should be forgot-

ten (decayed towards 0) and the output gate controls how much of the transformed

cell memory (tanh(ct)) should be output.
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2.2.4 RNNs for Neural Language Models

A modern neural language model can be built by combing RNNs with LSTM cells.

The input sequences consist of tokens (which could be sentences of words, words or

sentences of characters or the formally defined tokens of a programming language).

Since RNN cells take numerical vectors as inputs, the unique tokens in the language,

referred to as token types which make up the vocabulary, V , need to be encoded

somehow. One approach is to use the one-hot encoding scheme. Each token type is

assigned a unique, sequential, integer ID, τ and encoded as a |V | dimensional vector

with 1 in position τ and 0 elsewhere. The dimension of these vectors grows with

the vocabulary size and can therefore be extremely large. Their sparsity also makes

them inefficient.

A more efficient approach is to use a dense vector encoding, also known as

an embedding. Each token type τ is mapped to a vector xτ ∈ Rs where s refers to

the embedding size. These dense representations are considered model parameters

and can be trained. It was noted by Mikolov et al. [23], that learning these embed-

dings results in “high-quality distributed vector representations that capture a large

number of precise syntactic and semantic word relationships”. In other words, the

model learns to automatically organise concepts, and capture the relationships be-

tween words, by placing syntactically and semantically related words close together

in the embedding vector space. As a side note, this idea was extracted and used in

a model called word2vec that has the sole purpose of building word embeddings.

Mikolov et al. [23] found that certain semantic and syntactic patterns could be re-

produced using vector arithmetic on their English word embeddings. For example,

subtracting the vector representation of “man” from “brother” and adding “woman”

would produce a vector closest to the embedding of “sister”.

At each step, while processing the embedded input sequence, the RNN outputs

a fixed size vector in Rs. These vectors are each projected to R|V | after which a

softmax [24] (Equation 2.12) can be applied to derive a probability distribution over

the token types in the vocabulary. During training, these distributions are compared

to the actual next token that occurred in the training set and the cross-entropy [25]
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loss is calculated as a summary of the success or failure of the model to predict the

next token. Equation 2.13 [26] shows the cross entropy loss for a single step using

the model’s predicted distribution y and the true target distribution y′, which in this

case is a one-hot encoding of the target token type. The symbols y′k and yk refer to

the kth component of vectors y′ and y respectively.

softmax(x)i =
exi

∑
|V |
j=1 ex j

(2.12)

ε(y,y′) =−
|V |

∑
k=1

y′k logyk (2.13)

An illustration of a typical neural language model, where the RNN has been

unrolled for 3 steps, is provided in Figure 2.6. The input token type ids are labelled

τ1 to τ3 and have corresponding trainable s-dimensional embedding vectors x1 to

x3. Each LSTM cell receives the vector embedding of the current timestep as well

as the recurrent state of the previous timestep as input. The initial recurrent state

is set either to a vector of zeros or to the final state vector of a previous truncated

sequence. The output distribution at each step, obtained by applying the softmax

function to a linear projection of each output vector, is compared to the one-hot

encoding of the target next token.

The neural language model presented in this section forms the basis of the

neural models implemented for code suggestion in this work.

2.2.5 Practical Issues Related to Training

A number of practical issues arise when training RNNs on large, noisy datasets.

The first potential issue is that of exploding gradients, essentially the opposite of

the vanishing gradients problem discussed earlier, but not accounted for by LSTMs.

A heuristic approach of gradient clipping, introduced by Pascanu et al. [27], is

commonly employed to deal with this. Gradient vectors are rescaled whenever their

(Euclidean) norms exceed some threshold. For example, the gradient vector g is
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Figure 2.6: An illustration of a neural language model unrolled for 3 steps.

replaced with threshold
‖g‖ g whenever ‖g‖ is larger than the threshold.

Another issue commonly arising with complex machine learning models, par-

ticularly those as powerful as deep neural networks, is that of overfitting. Overfitting

occurs when the model starts to fit the noise in its training data rather than capturing

the true underlying signal. It is easily detected by noticing decreasing loss on the

training set coupled with increasing loss on a held-out test or validation set. Over-

fitting is traditionally dealt with by regularisation, a useful form of which called

dropout is common in deep neural networks. The key idea is that units are ran-

domly dropped from the network during training, which was shown by Srivastava

et al. [28] to “significantly reduce overfitting and give major improvements over

other regularization methods”. Dropout during training, effectively results in sam-

pling from a number of “thinned” networks. When making inferences at test time,

the use of the un-thinned network is akin to more traditional ensemble methods.

Finally, when dealing with large vocabularies, it is clear from equation 2.12,

that the calculation of softmax can become expensive due to the sum over the entire

vocabulary in the denominator. Hierarchical softmax [29] addresses this by structur-
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ing the softmax as a binary tree computation, thus requiring O(log |V |), rather than

O(|V |) operations to compute the probability of a single token. Sampled softmax

[30], another alternative that can be used during training, re-expresses the denom-

inator of equation 2.12 as an expectation. The expectation can then be estimated

using importance sampling where the proposal distribution is the log-uniform dis-

tribution for a vocabulary that follows a Zipfian distribution (it is shown in chapter 4

that the vocabulary associated with Python source code does indeed follow a Zipfian

distribution).

2.2.6 Attention

Attention mechanisms are a recent trend in NLP, having been successfully applied

to sequence-to-sequence tasks such as machine translation [31], question-answering

[32] and syntactic parsing [33]. Sequence-to-sequence models “consist of two

[RNNs]: an encoder that maps an input sequence of words into a dense vector

representation, and a decoder that conditioned on that vector representation gener-

ates an output sequence” [34]. Attention mechanisms were introduced to overcome

the bottleneck of the single vector representation of the input sequence by allowing

the decoder to refer back to, or attend to, output vectors generated by the encoder

for each part of the input sequence, at each step of output generation.

The use of attention implies that the vector representation between the encoder

and decoder no longer needs to capture the entire semantics of the input sequence,

but rather just a representation informing the second RNN which of the encoder’s

output vectors it needs to attend over [35].

Very recently, attention mechanisms were adapted for use in language mod-

elling by Cheng et al. [36], who considered attention as equipping LSTM cells with

an expanded, fixed-length memory tape rather than a single memory cell. They

achieved promising results in the standard Penn Treebank benchmark. In a similar

vain, Tran et al. [37] added a “memory block” to LSTMs for language modelling

of English, German and Italian and outperformed both n-gram and standard neural

baseline models.

As they relate to a key aim of this work, attention mechanisms for language
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modelling as well as an extension making them more suitable to the long-term de-

pendencies in source code are developed and discussed further in chapter 5.



Chapter 3

Related Work

This chapter reviews and highlights previous related work done on the application

of NLP language models to the task of code suggestion. These works are compared

and contrasted to the approach taken in this dissertation.

3.1 N-gram models
The majority of previous work in code suggestion using language modelling, and

more generally the analysis of formal programming languages with NLP language

models, has focussed on the use of n-gram models. Many of these works were in-

spired by Hindle et al. [1] who argued that while in theory, programming languages

are complex, flexible and powerful, in practice, the programs that real people write

fall in a much smaller space. Real programs contain significant repetitiveness and

have sufficient predictable statistical properties that can be captured by statistical

language models. They tested this hypothesis by training n-gram language models

on a corpus of Java and C code and discovered that the models captured significant

local regularity within projects that was not the result of programming language

syntax. Regularity within a project refers to the “vocabulary, and specific local

patterns of iteration, field access, method calls, etc”. They applied their language

model to build a code suggestion system in Eclipse, which they found to perform

better than the standard Eclipse code suggestion system.

While Hindle et al’s work was pioneering on the task of code suggestion, the

NLP models they used have now become outdated. The key differences in this work
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are the use of more modern language modelling techniques, a significantly larger

corpus of source code and the application to a dynamic, rather than a static language.

As was noted in the introduction, existing code suggestion systems in IDEs are

already quite good for static languages. Dynamic languages could arguably benefit

more from machine learning.

Similar work to that of Hindle et al included Raychev et al [38] who used 3-

gram models along with a simple variant of an RNN language model to complete

“holes” in program snippets. While still technically code suggestion, it is unclear

what practical application this unusual variation of the task would have.

Other work involving the application of n-gram language models to program-

ming languages, albeit on different tasks to code suggestion, included those of Alla-

manis et al. [39] who used n-gram models to build a tool to suggest revisions to code

to improve its consistency with the conventions of the rest of the project. Campbell

et al. [40] noted that syntax errors should be surprising to a language model trained

on a corpus of compilable code (the language model should assign erroneous tokens

a low probability). They used this idea to build an improved error-reporting system

for Java.

Tu et al. [41] enhanced the standard n-gram model, which captures global reg-

ularity in software, by incorporating a cache. This cache allowed them to exploit

the high level of locality inherent in software that results from the specialisation

of modules. They empirically verified that code tends to take on special forms of

repetitiveness in local contexts, for example through the declaration of new iden-

tifiers and patterns of identifier usage. They evaluated their model against 2 small

Java and Python corpora consisting of 9 projects each and found that their model

was able to capture local regularity. This resulted in an accuracy improvement of

between 16% and 45% over standard n-gram models.

The introduction of attention mechanisms to language models compares to Tu

et al’s idea of adding a component to the language model that was specifically de-

signed to exploit the properties of source code. As will be seen in chapter 6, the ad-

dition of a standard attention mechanism improves upon a neural language model’s



3.2. Programming Language Grammar 29

ability to model the locality in source code, particularly relating to identifiers. This

idea is taken a step further with the introduction of a novel architecture that further

focusses on the unique properties of source code.

3.2 Programming Language Grammar

Programming languages need to be understood by computers and are therefore in-

herently unambiguous. They have formal grammar specifications and well-defined,

deterministic parsers that can convert a lexed sequence of language tokens into an

Abstract Syntax Tree (AST). This inherent structure was exploited by both Maddi-

son and Tarlow [42] and Allamanis and Sutton [2] who used Probabilstic Context

Free Grammars (PCFGs) to build a generative model of source code and to ex-

tract idiomatic patterns (also known as templates) respectively. The PCFG model

allowed them to generate ASTs directly rather than working at the lexical level.

In particular, Maddison and Tarlow [42] argued that while the syntax of pro-

gramming languages can be represented by context-free grammars, conforming to

the grammar does not ensure that a program can actually compile. This is due to

additional rules, not represented in the grammar, such as the requirement that vari-

ables be declared before being used. To model these additional context-dependent

rules, they augmented their PCFG with traversal variables that maintained context

depending on the AST generated so far. The traversal variables modulated the dis-

tribution over child trees. Similar extensions to PCFGs were successfully applied

to a Javascript corpus by Bielik et al. [43].

These works, which involved direct modelling of ASTs, represent an alter-

native, and possible complement, to the purely lexical approach followed here.

Maddison and Tarlow used a form of log-bilinear model and Allamanis and Sut-

ton used Bayesian methods to implement their PCFGs, rather than neural models.

Some components necessary to build a neural architecture to do similar modelling

do technically exist though. In particular, Tai et al [44] introduced a generalisation

of LSTMS called Tree-LSTMs, a variation of which can be used to model ASTs.

While these models would be extremely useful for building a program represen-
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tation to use in program classification, for example, it is unclear how they can be

adapted for use in a generative context. Another notable related architecture called

Recurrent Neural Network Grammar (RNNG), which can be used in a generative

context, was developed recently by Dyer et al. [45]. The RNNG model operates

similarly to PCFGs, but the context-free assumption is relaxed by the use of RNNs

which condition on the entire history. They integrated a transition-based parser di-

rectly into their neural architecture, enabling their model to generate syntactic parse

trees of English and Chinese and outperformed sequential LSTMs in a language

modelling task.

Similar approaches to those mentioned were initially considered for this work,

but their complexity, relative lack of research and implementations, coupled with

the intuition that there was still large room for improvement in lexical-level mod-

els through the use of neural attention, led to the decision to focus on the lexical-

level approach for this work. Furthermore, Maddison and Tarlow showed that even

PCFGs don’t guarantee compilable code and additional mechanisms would be nec-

essary to ensure this. The excellent results already obtained by lexical-level neural

models leads to the question of whether modelling ASTs do provide practical gains

that would outweigh their complexity. This would be an interesting avenue for fu-

ture work.

3.3 Datasets

A feature common to the majority of previous work in the area is that of relatively

small datasets. This was addressed by Allamanis and Sutton [46] who constructed

a corpus of 352 million lines of Java and analysed it with n-gram language models.

They found that by using a sufficiently large dataset, they were able to construct a

single language model that was effective across multiple different project domains,

unlike Hindle et al. who found it necessary to build models on a per-project basis.

They verified that identifiers were the largest contributor to vocabulary size and that

the vocabulary grew by on average, 56 new token types per 1 000 lines of code

due to the introduction of new identifiers. Their observation is similar in spirit



3.4. Deep learning 31

to Heap’s law [47], which states that the vocabulary size of a corpora of natural

language will grow in an unbounded fashion. By segregating groups of identifiers,

they established that method names tended to be more predictable than type and

variable names. Ultimately, their language model was used to build new data-driven

code complexity metrics.

Inspired by Allamanis and Sutton’s findings, this work also used a single model

trained on a large Python corpus, rather than training separate models on differ-

ent projects. Similar results relating to the vocabulary and identifier names were

found and are discussed in chapter 4. Their finding is particularly promising for the

prospects of developing the models of this work into a real code suggestion system

built into an IDE. It suggests that such a system can be pre-trained and does not

necessarily need to be updated or customised to every unique project. While the

project-based approach may be feasible for simple n-gram models, neural models

are significantly more difficult and time-consuming to train and it would be imprac-

tical to re-train or even update them on developers local machines in a real system.

3.4 Deep learning

Coinciding with the switch from n-gram to neural language models in the general

NLP community, White et al. [48] compared various n-gram models with modern

neural language models in the programming language context. The n-gram models

included those with n ranging from 2 to 9 as well as the cache-based model of Tu

et al. They performed their analysis on a large Java corpus collected from Github.

Their models were evaluated using Perplexity, an “intrinsic evaluation metric that

estimates the average number of tokens to choose from at each point in a sequence.”

They found that the neural language model beat their best n-gram baseline (an 8-

gram interpolated model with 100-token unigram cache) with a perplexity of 10.17

compared to 12.22. In the code suggestion task, they found their neural language

model to also outperform the best n-gram model in terms of top-k accuracy. The

neural model, in particular, scored 12 percentage points higher in top-1 accuracy.

Other research focussing on the use of deep neural language models for source
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code included that of Das and Shah [49] who compared an RNN model with GRU

cells (an alternative to LSTMs) to a feed-forward neural network with attention.

They noted that they were surprised that the feed-forward network with attention

performed better than the RNN, but their evaluation was based on a 2 very small

corpora, consisting of a single C and Python project respectively. The use of LSTM

cells was compared to standard RNN cells (as used by White et al.), by Dam et al.

[9] on the same dataset used by Hindle et al. They found that LSTMs significantly

outperformed standard RNNs, which they hypothesised was due to their improved

ability to learn long-term dependencies found in source code.

White el al’s work validated the premise that neural language models would

also outperform previous n-gram models on source code as they had done in other

areas of NLP. It is for this reason that new work, such as that presented here, can

largely ignore n-gram models and go straight to the more advanced neural models.

Nevertheless, in light of their explicit mention of not claiming that the same result

would apply to other programming languages, a selection of n-gram models were

still run to re-confirm that the same finding applies to Python source code in chap-

ter 6. The neural models used here were also more advanced than those used by

White et al, who used the standard RNN’s described in section 2.2.2. As explained

in chapter 2, standard RNNs suffer from issues such as the vanishing gradient prob-

lem which hampers their ability to deal with long-range dependencies. The LSTM

model which was found by Dam et al. to outperform RNN models forms the neu-

ral baseline used in this work. These models are then extended with the attention

mechanisms that Das and Shah found to significantly improve performance even on

less sophisticated feed-forward networks.

Other interesting applications of deep neural language models involving source

code have been used in contexts such as code summarisation using Convolutional

Neural Networks and an attention mechanism [50]. Mou et al [51] incorporated

information from the Abstract Syntax Tree to build a vector representation of pro-

grams that can be used for program classification. Finally, Ling et al. [52] used deep

neural networks with multiple attention mechanisms, each specialised to a partic-
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ular task, to automatically generate implementations of Magic the Gathering cards

in Java and Python. They generated a probability distribution over these attention

mechanisms and used the weighted average output of each mechanism when gen-

erating their output sequence. This idea served as a strong inspiration for the novel

architecture introduced in chapter 5, which like Ling et al. weighs the output of

multiple task-specific attention mechanisms, but does so in a language modelling

rather than a sequence-to-sequence context and also does so on a token level rather

than the character level used by Ling et al.



Chapter 4

Data

As mentioned in chapter 3, the majority of previous work in code suggestion fo-

cussed either on very small corpora, or on statically-typed languages, particularly

Java. For this reason, a new Python corpus was collected for this work. According

to the programming language popularity website Pypl [53], Python is the 2nd most

popular language after Java. It is also the 3rd most common language in terms of

number of repositories on the open-source code repository, Github, after Javascript

and Java [54].

4.1 Data Collection
Github is the largest hosting platform for source code in the world, with more than

14 million users and over 35 million repositories [55]. Coupled with the fact that it

offers numerous metrics on each repository it hosts and has an easy to use API for

data retrieval, it was the logical choice to obtain a new source code corpus.

It is difficult to automatically determine what constitutes good quality code.

For this reason, a number of heuristics were developed in order to increase the

likelihood of obtaining good quality code as well as to restrict the corpus to a man-

ageable size. To download the Python corpus, the Github API was queried for the

top 1000 projects with more than 100 stars and sorted by the number of forks de-

scending. Stars are similar to bookmarks by users, whereas forks are copies of a

repository that allow users to freely experiment with changes without affecting the

original repository [56]. The large thresholds applied to these metrics suggested
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a high degree of interest in the projects considered. It was assumed that projects

with a high level of interest tend to be of good quality as they are likely used and

analysed by many people. This methodology was similar to that used by Allamanis

and Sutton [46] and Allamanis et al [39].

Once the list of 1000 repositories were obtained, they were cloned using a

Python implementation of the git tool. The URL and exact commit SHA 1 of each

repository was recorded and will be made available along with a script to clone the

repositories. This will allow anyone interested in doing future work using the same

corpus to easily reproduce it.

The constituent Python files from the downloaded repositories, were split at a

project level into a training set, validation set and test set (the lists of which will

again be made available). Hashes of files were compared across sets to ensure that

there was no leakage of information from the training set into the validation or test

sets.

4.2 Corpus Statistics
Basic statistics for the corpus are provided in table 4.1, which shows that this corpus

is significantly larger than those used in previous code suggestion work. Figure 4.1

shows the distribution of token types in the training set on a log-log scale. It indi-

cates, for example, that approximately 1 million token types occur only once in the

entire training set and another 1 million token types occur between 1 and 10 times.

It is clear that the distribution follows Zipf’s law, which states that given some cor-

pus of natural language, the frequency of any word is inversely proportional to its

rank in the frequency table [57]. It implies roughly that the vast majority of the

token types that make up the vocabulary, occur very infrequently in the corpus. A

Zipfian distribution was also found in a large Java corpus in an analysis by Linstead

et al. [58].

The majority of the long tale in the vocabulary of the corpus is made up of

unique identifiers in the source code. These are the names given by programmers

1Git uses an SHA hash to uniquely identify commits to a repository. Their tooling allows one to
restore a repository to the exact state it was in after a given commit
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Table 4.1: Python corpus statistics

Dataset Files Lines Tokens Vocab Size

Train 118 298 26 868 583 88 935 698 2 323 819
Validation 26 466 5 804 826 18 147 341
Test 43 062 8 398 100 30 178 356

Total 187 826 41 071 509 137 261 395 2 323 819

Figure 4.1: Vocabulary distribution of the Python corpus training set

to the classes, variables, arguments, attributes and functions in a program. Out of

the vocabulary of 2.3 million token types, almost 1 million are identifier names.

Identifiers therefore warrant focussed analysis.

Figure 4.2 shows a box plot of the distances (in number of tokens) between

identifier declaration and usage, split by identifier group. The figure shows that the

dataset clearly exhibits the long term dependencies which Dam et al. hypothesised

to exist in source code. Not surprisingly, arguments and variables tend to be ref-

erenced a lot sooner than attributes, functions and classes which exhibit some very

long term dependencies as shown by the 3rd quartile of distances between 500 and

1000. It would not be surprisingly, therefore, for language models to struggle to

predict identifier usage due to these extremely long range dependencies.
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Figure 4.2: Token distances between identifier declaration and usage indicating long term
dependencies in source code

4.3 Normalisation of Identifiers

The Python corpus discussed in this chapter contains a large vocabulary with a long

tail of infrequent words. This presents a potential problem for language models

which require sufficient data to form sensible embeddings of every token type con-

tained in the vocabulary. Many of the tokens in the corpus occur only once and the

majority of the long tail consists of identifier names.

For this reason, as well as to enable a sensible analysis of model performance

on identifiers, a normalised dataset was derived. Each identifier name was replaced

with a new name indicating the identifier group (class, variable, argument, attribute

or function) and a number that makes the identifier unique within its enclosing

scope. This pre-processing step was performed by parsing each source code file

into an Abstract Syntax Tree (AST) from which the declaration points and scope of

each identifier could be determined. Using this information, the ideas of Hermann

et al. [59] were applied to generate a new name for each identifier by combining

the identifier group name with a random number. Random numbers were chosen

instead of sequential numbers to prevent models from learning any spurious pattern

in the number sequence. The new names were replaced in the AST and the code

regenerated. Note that only novel identifiers defined within the scope of a single file
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Figure 4.3: A small example of a normalised Python file, with the original on the left and
normalised on the right

were affected by the normalisation process. Identifier references to external APIs

and libraries were left untouched. The process of regenerating the code from the

AST also had an additional benefit of ensuring consistent formatting across the cor-

pus. A small example of a normalised Python file is presented in figure 4.3. An

example of one of the test cases used in the development of the normalisation script

is presented in Figure 4.4. The code is not actually useful, but it is valid Python and

shows a number of different situations in which identifier names can occur as well

as difficulties such as inheritance. Note that once again, the script used to normalise

the corpus will be made available to future researchers.

The normalisation process resulted in a significant reduction in the vocabulary

size to 987 151 token types (after also replacing numbers with a special <num>

token). The normalisation has the added benefit of preventing models from predict-

ing common names in places where a reference to a previously declared variable

is called for, despite that name not being declared in the particular file. Finally,

by preserving the identifier’s group, neural models would still be able to sensibly

differentiate between the different identifier groups in the embedding space if nec-

essary.
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Figure 4.4: A test case used in the development of the normalisation process



Chapter 5

Neural Attention for Code Suggestion

This chapter discusses neural attention mechanisms for language modelling and

develops a new variation which, by leveraging the unique long-range dependencies

in source code, is particularly well suited to the task of code suggestion.

5.1 Attention for Language Modelling
Standard neural attention mechanisms for language modelling (such as those of

Cheng et al. [36] and Tran et al. [37]) utilize a fixed-sized rolling window of k token

embeddings that enter an attention memory (Mt). At each step in the input sequence,

the current state of the network, represented by the LSTM’s recurrent state ht , is

used to determine a probability distribution (ααα t) over the vectors in memory. A

weighted average (MαααT
t ) of the memory vectors is then added to the LSTM’s output

vector. In this way, the LSTM’s single state vector does not bear the full burden of

capturing all relevant information from the past. It can instead inform the attention

mechanism which of the previous m outputs to look back on to obtain relevant

information.

When modelling short sequences such as natural language sentences, it is prac-

tical to have a memory size that can capture the entire input sequence. However, as

noted in chapter 4, programming languages contain certain very long range depen-

dencies which can’t practically be captured by such fixed sized rolling windows.

For this reason, a new approach was considered that can explicitly capture these

long term dependencies.
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5.2 Attention for Code Suggestion
The key idea of the novel approach presented in this chapter was to allow for one

or more separate, filtered attention mechanisms, each with its own memory and

corresponding to some learned suggestion task. The suggestion tasks may have re-

duced vocabularies and can therefore specialise on different classes of suggestions.

Instead of relying on fixed token windows, the tokens that enter each independent

attention memory are indicated by an input flag. Since these flags may be sparse in

the input sequence, attention mechanisms can be specialised to deal with specific

forms of long-range dependencies that span larger distances than any practical fixed

window.

At each prediction step, the model outputs a distribution over the tasks, one

of them being to predict form the standard LSTM language model, which may be

considered a fall-back. The final prediction distribution consists of the weighted

average of the language model and each attention mechanism.

The specific task considered in this work, which may be considered a proof of

concept, was to predict a reference to a previously declared identifier. The tokens

corresponding to identifier declarations were flagged to enter the attention memory

for this task. When predicting the next token in a sequence, the model was free

to choose, based on the current state and input, whether to utilise the specialised

identifier attention mechanism (similar to a symbol table) or to fall back to the more

general language model. Other, more concrete developer use-cases may also be

modelled as tasks, such as the completion of a function call.

5.3 Formal Specification

5.3.1 Attention mechanisms

Suppose that there are n attention tasks, each with a fixed memory size of k. For

each step t and for each attention task i, an attention distribution ααα ti and attention

vector ati is calculated according to equations 5.1 to 5.4. Mti refers to the memory

accumulated for task i up to point t in the sequence. WV
i and W h

i are parameters of

size Rs x s and wi is a parameter of size Rs where s refers to the size of the embed-
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ding vectors. Finally, note that 1k represents a k-dimensional vector of ones and⊗ a

point-wise product. Equations 5.1 to 5.4 are adapted from those used for sequence-

to-sequence attention by Rocktäschel et al. [35], with the key difference being the

addition of the i subscript to cater for multiple possible attention mechanisms.

The vectors entering the memory (ei1, ...,eik) may be either the input embed-

ding vector at a flagged input step or the corresponding output vector.

Mti = [ei1 ei2 ... eik] ∈ Rs x k (5.1)

Gti = tanh(W M
i Mti +W h

i ht⊗1k) ∈ Rs x k (5.2)

ααα ti = softmax(wT
i Gti) ∈ R1 x k (5.3)

ati = Mtiααα
T
ti ∈ Rs (5.4)

5.3.2 Attention for Language Modelling

The standard attention mechanism used in language modelling, such as those of

Cheng et al. [36] and Tran et al. [37], can be considered a special case of equations

5.1 to 5.4 1 where the i subscript is dropped as there is only one such mechanism per

time step. The vectors making up Mt are set to a fixed window of the last k LSTM

output vectors. At each step, the attention vector at is combined with the output

vector of the LSTM, ot (the equations for which were in section 2.2.3) according

to equation 5.5. Here WO is a projection matrix of size Rs x 2s and the non-linear

activation function f is optional, but was chosen to be tanh when implementing this

model. The resulting final output vector Ot is projected to size R|V | and a softmax

is applied, as is standard in neural language models, to arrive at a probability dis-

tribution yt over the the token types in the vocabulary. This process is presented

in equations 5.6 and 5.7 where WV and bv are affine projection parameters of size

R|V | x s and R|V | respectively.

1The model was in fact implemented as a special case in this work
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Figure 5.1: An LSTM cell with built-in attention mechanism

Ot = f(WO

ot

at

) ∈ Rs (5.5)

lt =WV Ot +bV ∈ R|V | (5.6)

yt = softmax(lt) ∈ R|V | (5.7)

The combination of the LSTM cell with an attention mechanism can be conve-

niently thought of as a single unit replacement for LSTM cells in a neural language

model. An illustration of an LSTM with integrated attention is presented in figure

5.1

5.3.3 A Novel Approach

The novel approach introduced here allows for n attention mechanisms as described

in section 5.3.1, with the addition of a memory component that tracks the vocab-

ulary id of each item in memory, referred to as M′ti and presented in equation 5.8.

Items enter each attention memory only as a result of an input flag indicating that

they should do so, rather than through a fixed window. Instead of being integrated

into the LSTM cells, the attention mechanisms are considered separately. The stan-

dard LSTM output is projected to R|V | and has a softmax applied to it to to obtain
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the standard neural language model probability distribution yt over the vocabulary.

A distribution λλλ t over the n attention tasks and the language model itself, is then

calculated using equation 5.10. Here W λ and bλ are trainable affine projection pa-

rameters of size R(n+1) x s and Rn+1 respectively. The state representation vector

hλ
t , combines information from the recurrent state of the language model, the cur-

rent input and the n attention mechanisms. It is calculated according to equation

5.9, where W hλ

is a projection matrix of size Rs x (n+2)s.

M′ti = [idti1 idti2 ... idtik] ∈ Nk (5.8)

hλ
t =W hλ



ht

xt

at1
...

atn


∈ Rsize (5.9)

λλλ t = softmax(W λ hλ
t +bλ ) ∈ Rn+1 (5.10)

The standard language model can be considered a special “suggestion task 0”.

It assigns a probability P(τ|task = 0,contextt) = (yt)τ = (softmax(WV ot +bV ))τ to

every token type with unique integer id τ in the vocabulary. Note that (yt)τ refers to

the τth component of the LSTM probability vector yt and τ ∈ [1, |V |]. Each of the n

attention probability vectors ααα t1 to ααα tn can also be thought of as a probability mass

function where P(τ = (M′ti) j|task = i,contextt) = (ααα ti) j for i ∈ [1,n] and j ∈ [1,k]

and is 0 for all other token types. Note that (M′ti) j is the jth component of the vector

memory M′ of the ith attention mechanism at step t.

The final output probability of the model, Yt at step t is then calculated as

the λλλ t weighted average of the probabilities assigned by each of the tasks. Since

P(task = i|contextt) = (λλλ t)i, the final probability assigned to token type τ is deter-
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Figure 5.2: Illustration of the internal workings of the attention mechanisms

mined by the law of total probability as per equation 5.11. (Note again that the 0th

task is considered to be the standard language model’s prediction).

P(τ|contextt) = (Yt)τ =
n

∑
i=0

(λλλ t)iP(τ|task = i,contextt) idτ ∈ {1, ..., |V |}

(5.11)

The internal workings of a single task attention mechanism are illustrated in

figure 5.2. The figure depicts a single attention task, however for multiple tasks, ev-

erything except the components illustrated in green will be replicated. Note that un-

like the standard attention for language modelling, the attention mechanisms must

now be considered separately from the LSTM, as the results are only combined in

the very last stage of the language model process. The manner in which a task

attention mechanism fits together with the language model is illustrated in figure

5.3.
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Figure 5.3: Illustration of the integration between a single task attention mechanism and a
standard neural language model

5.4 Initial Attempts

The model of section 5.3.3 was initially designed to include the filtered attention

mechanisms as part of the LSTM cell as it is in the standard attention model. The

lambda weightings as calculated in equation 5.10 were then applied at the point of

combining the LSTM output vector ot with the attention output vectors at1, ...,atn

per equation 5.12. As in the standard attention model, this combined output vector

then underwent the usual projection and softmax (equation 5.13) to derive the final

output probability vector.

O′t =
[
ot at1 · · · atn

]
∈ Rs x (n+1)

Ot = O′tλλλ t ∈ Rs (5.12)

yt = softmax(WV Ot +bV ) (5.13)

A number of variations of the model were implemented and tested with the
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identifier tagging scheme. All of these variations resulted in either the model learn-

ing to assign the entire λ weight to the language model and ignore the attention

mechanism, or resulted in no improvement in perplexity over the standard LSTM

language model. A short discussion of these results is provided in section 6.4.

For the embedding vectors that fed into the memory M, the use of input em-

beddings and output embeddings were tried. In addition to this, it was hypothesised

that because the purpose of the output embedding is to encode the next token in the

sequence, it may make more sense to split each LSTM output vector into two parts,

one used for the standard language model process and the other used to drive the at-

tention mechanisms. Different variations of the lambda state vector were also tried,

including setting hλ
t directly to ht , xt or a projection of at1, ...,atn and every com-

bination thereof. Finally, different non-linear activation functions were included in

the calculation of λ itself as well as a fixed uniform lambda to force the model to

use the attention vector at every time step.

These many variations were tried due to the strong intuition that the model

should have worked and should have been able to learn when to use the attention

mechanism. It was thought that some detail in the equations may have been what

prevented it from doing so. The revised model that removed the attention mech-

anism from the LSTM cell and combined the α vectors with the language model

probability was inspired in part by the work of Gu et al. [60] who built a sequence

to sequence copy mechanism. Their copy mechanism was capable of copying to-

kens directly from the encoders input sequence to the decoder’s output sequence by

combining decoder output probabilities with attention weights over the encoder’s

outputs.

5.5 Implementation Details

An implementation of the above model that could work with batched inputs was

required for efficient implementation of batched SGD. This version is specified in

informal notation below. All mathematical symbols carry the same meaning as

in the previous section and batch refers to the mini-batch size. The t and i sub-
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scripts have been dropped to simplify the notation. Certain pseudo-code operations

have also been added for simplicity, such as Ra x b→ Rc x d which indicates a re-

shape operation. The batch.mul operation splits its 2 3D tensor arguments along

the first dimension, performs a matrix multiplication of each corresponding matrix

and then combines the result into a 3D output tensor. The operation tile(h) repeats

the Rbatch x size state matrix h, k times to form a matrix of size R(batch x k) x size

V ′ =


id11 id12 · · · id1k

id21 id22 · · · id2k
...

... . . . ...

idb1 idb2 · · · idbk

 ∈ Rbatch x k (5.14)

V =


e11 e12 · · · e1k

e21 e22 · · · e2k
...

... . . . ...

eb1 eb2 · · · ebk

 ∈ Rbatch x k x size→ R(batch x k) x size (5.15)

(5.16)

M = tanh(VWV + tile(h)W h) ∈ R(batch x k) x size (5.17)

α = so f tmax(MwT ) ∈ R(batch x k) x 1→ Rbatch x 1 x k (5.18)

ai = batch.mul(α,V ) ∈ Rbatch x 1 x size→ Rbatch x size (5.19)

λ = so f tmax(hλW λ + tile(bλ )) ∈ Rbatch x (n+1) (5.20)



Chapter 6

Experiments and Analysis

A series of experiments were conducted in order to assess the effectiveness of deep

neural language models on the code suggestion task for Python source code. In

particular the use of a standard neural attention mechanism and the novel approach

of chapter 5 were compared to standard neural and ngram models. This chapter

describes the experimental setup and goes on to analyse the results using both quan-

titative and qualitative criteria.

6.1 Experimental Setup

6.1.1 Preprocessing

Experiments were run on both the raw and normalised datasets of chapter 4. Some

additional preprocessing steps were applied in order to prepare the data for the ex-

periments. Comments and blank lines were removed in both datasets and numerical

constants were replaced with a special <num> token. Tokens which occurred fewer

than 10 times in the raw and 5 times in the normalised training sets, as well as tokens

in the validation and test sets that did not occur in the training set, were replaced

with a special <OOV> (out of vocabulary) token. Finally, it was ensured that all

identifier names were included in the vocabulary of the normalised dataset even if

they were under the threshold. This resulted in comparable vocabulary sizes of 210

117 and 221 313 token types for the raw and normalised datasets respectively.

The preprocessing steps applied here were consistent with those done in previ-

ous work ([9], [48]).
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6.1.2 N-gram baselines

While there was already a strong intuition based on the work of White et al. [48]

that even the simplest neural language model would outperform an n-gram model

on the code suggestion task, a number of n-gram model variations were included in

the experiments as baselines.

The variations included n ranging from 3 to 6 and the smoothing technique

being one of Kneser-Ney or Modified Kneser-Ney (MKN) smoothing. The models

were named “3-gram”, “4-gram”, “5-gram” and “6-gram” for those using Kneser-

Ney smoothing and “3-gram (MKN)”, “4-gram (MKN)”, “5-gram (MKN)” and “6-

gram (MKN)” for those using Modified Kneser-Ney smoothing. All n-gram models

were trained and evaluated using the Kyoto Language Modelling Toolkit [61].

6.1.3 Neural Language Models

The simplest neural language model used in this work, which can be considered

a baseline for the attention models, consisted of a standard RNN language model

with LSTM cells (referred to as “LSTM”). This model was trained with mini-batch

SGD with a batch size of 75 and Truncated BPTT with a sequence length of 50.

The gradient descent optimiser was initialised with a learning rate of 0.7 and this

rate was decayed by a constant multiple of 0.9 after each training epoch. 1.

Two variations of the standard attention mechanism for language modelling

described in section 5.1 were implemented. These variations, referred to as

“LSTM+Att(20)” and “LSTM+Att(50)” used fixed-window attention memory sizes

of 20 and 50 respectively but were otherwise identical. The large attention memory

size of LSTM+Att(50) was used in the hope that it would be able to capture some

medium-term dependencies. They were trained with a smaller initial learning rate

of 0.2 due to numerical instability at higher learning rates.

The novel attention model of chapter 5, referred to as “LSTM+Att CS” was

implemented using the single task identifier tagging scheme described in section

5.2. The attention memory size was set to 20. Due to memory constraints, it also

1A training epoch refers to a full iteration through the entire training dataset. Training a neural
model generally involves multiple epochs
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required a smaller batch size of 30 to train. Note also that this model was only run

on the normalised dataset because it is was developed particularly for use with iden-

tifier references. The raw dataset had the majority of identifier references replaced

with <OOV> tokens.

All neural models in this work were developed using TensorFlow [62] and

trained on an NVidia Tesla K80 or Geforce GTX 1070 GPU. Python source code

files were considered a single unit, and each was split into sequences of size 50.

While processing a single file, the last recurrent state of the RNN was fed as the

initial state of the subsequent sequence of the same file. The recurrent state was

reset to zero after completing a single file. All models used embedding and hidden

dimension sizes of 200, LSTM forget gate biases initialised to 1 ([63]), a threshold

of 5 for gradient norms and had all other parameters initialised random uniformly

in the range (-0.05, 0.05). To reduce the chance of overfitting, dropout was applied

to the inputs at a rate of 0.1. Sampled softmax using a log-uniform sampling dis-

tribution and a sample size of 1000 was also employed to reduce the performance

penalty of the fairly large vocabulary size. Unfortunately, due to the large amount

of time it took to train the models, it was not practical to conduct a grid-search to

determine optimal values for these hyper-parameters, but they were very similar to

those used in previous work, including by Tran et al. [37].

6.1.4 Evaluation metrics

Three key metrics were chosen for quantitative evaluation of the models. The first

metric was perplexity (sometimes abbreviated as PP) which is fairly standard for

language models. Perplexity is an intrinsic metric that estimates the average number

of tokens that the model thinks is likely at each step in the sequence. A more

certain model will have lower perplexity. The metric is easily derived from the

cross entropy loss of equation 2.13 using equation 6.1 where once again, y refers

to the predicted distribution of the model at each step and y′ is the corresponding

target distribution, a one-hot encoding of the target token type.
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PP = 2∑y,y′ ε(y,y
′) (6.1)

The next two metrics were top-1 and top-5 accuracies which are commonly

used for recommendation systems. Top-1 accuracy measured the frequency with

which the true target token type corresponded to the one the model assigned the

largest probability. Top-5 accuracy measured the frequency with which the target

token type occurred in the top 5 highest ranked token types of the model (ranked by

probability).

These metrics (or variations of them) were also used in previous work ([1, 48,

46, 41])

6.2 Results and Analysis
The results for the n-gram baselines on the raw dataset and normalised dataset are

summarised in table 6.1 and 6.2 respectively with a summary of the test perplexities

in figure 6.1. It is clear that perplexity on the test set decreased with increasing n,

but the rate of decrease seemed to slow as n increased. Similarly, the top 1 and top 5

accuracies (both calculated on the test set only) increased at a decreasing rate with n.

It is expected that a minimum perplexity and maximum accuracy would be reached

at n equal to 7 or 8 as found in previous work ([48]). It is also noteworthy that even

though the modified Kneser-Ney smoothing technique performed slightly worse in

some instances on the training set (for example the 6-gram model), it performed

consistently better than Kneser-Ney smoothing on the test datasets for all n. The

modified technique therefore generalised better on this dataset.

Neural language model results are presented in table 6.3 for the raw dataset

and table 6.4 for the normalised. All models performed worse on the normalised

dataset than they did on the raw dataset. In terms of perplexity, even the best per-

forming model on the normalised dataset performed worse than the worst model

on the raw dataset, but this trend was not as pronounced in the accuracy scores.

On both datasets, adding an attention mechanism significantly improved the results



6.2. Results and Analysis 53

Table 6.1: N-gram baseline model results on raw dataset with OOV threshold of 10

Model Train PP Val PP Test PP Top 1 Acc Top 5 Acc

3-gram 9.14 14.38 16.65 21.60% 54.11%
3-gram (MKN) 9.38 14.06 16.23 21.86% 58.69%
4-gram 5.65 11.94 14.61 24.40% 57.42%
4-gram (MKN) 5.85 11.55 13.99 24.03% 58.80%
5-gram 3.54 10.26 12.32 24.85% 58.08%
5-gram (MKN) 3.70 9.87 11.81 24.53% 59.82%
6-gram 2.62 9.44 11.10 24.63% 57.86%
6-gram (MKN) 2.75 9.06 10.61 24.51% 59.74%

Table 6.2: N-gram baseline model results on normalised dataset with OOV threshold of 5

Model Train PP Val PP Test PP Top 1 Acc Top 5 Acc

3-gram 12.63 24.54 27.33 12.94% 50.12%
3-gram (MKN) 12.90 24.19 26.90 13.19% 50.81%
4-gram 7.40 21.50 24.43 13.68% 50.51%
4-gram (MKN) 7.60 21.07 23.85 13.68% 51.26%
5-gram 4.39 19.77 21.73 13.78% 50.83%
5-gram (MKN) 4.52 19.33 21.22 13.90% 51.49%
6-gram 3.26 19.18 20.68 14.65% 51.05%
6-gram (MKN) 3.37 18.73 20.17 14.51% 51.76%

on all metrics, and this was particularly the case on the normalised dataset where

the LSTM+Att(20) model achieved a test perplexity score 2.27 points lower than

the LSTM model and the LSTM+Att(50) model achieved almost 4 points lower, a

very significant difference. This was also reflected in the top-1 accuracies which

saw a roughly 3 and 6 percentage point improvement for the LSTM+Att(20) and

LSTM+Att(50) models respectively. This trend was essentially the same for top-

5 accuracy on the normalised dataset, but the top-5 accuracies did not increase as

significantly on the raw dataset. This suggests that the highest top-5 accuracy of

85.73% may be close to the upper threshold achievable on the Python corpus.

The best performing model overall, on the normalised dataset, was the

LSTM+Att CS model which achieved almost 1 point lower test perplexity, and

1 and a half percentage points higher top-5 accuracy than the LSTM+Att(50)

model, but had a slightly lower top-1 accuracy. It significantly outperformed the
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Table 6.3: Neural Language model results on raw dataset with OOV threshold of 10

Model Train PP Val PP Test PP Epoch Top 1 Acc Top 5 Acc

LSTM 5.15 7.36 7.75 15 60.57% 82.52%
LSTM + Att(20) 4.80 7.01 7.17 10 63.13% 83.80%
LSTM + Att(50) 4.39 5.92 6.09 11 66.25% 85.73%

Table 6.4: Neural Language model results on normalised dataset with OOV threshold of 5

Model Train PP Val PP Test PP Epoch Top 1 Acc Top 5 Acc

LSTM 9.29 13.08 14.01 15 57.91% 76.30%
LSTM + Att(20) 7.30 11.07 11.74 13 61.30% 79.32%
LSTM + Att(50) 7.09 9.83 10.05 12 63.21% 81.69%
LSTM + Att CS 6.41 9.40 9.18 7 62.97% 82.62%

LSTM+Att(20) model on all metrics, indicating that it made better use of its atten-

tion memory. It also outperformed the LSTM+Att(50) model despite having less

than half the attention memory available to it.

It is not surprising that even the worst neural model performed better than the

best n-gram model by a large margin on all metrics. The difference amounted to

almost 3 points in Test perplexity on the raw dataset and a large 6 points on the

normalised dataset. The differences were even more striking in the accuracy scores.

It is worth noting that the n-gram models tested here were not as powerful as the

models of Tu et al. [41], but even those models were outperformed in White et

al.’s work [48] by simpler RNNs than the LSTM model presented here. Another

interesting observation is that the 4-gram models achieved training set perplexities

comparable to even the attention models. Larger values of n resulted in lower train-

ing perplexities than the neural models. This suggests that the neural models were

able to generalise better than the n-gram models and that the n-gram models may

be more prone to overfitting.

In order to understand why the models performed worse on the normalised

dataset than on the raw, it is worth noting the key difference between the two

datasets. By replacing the almost a million unique identifiers noted in chapter 4

with a much smaller vocabulary of randomised identifier names, the normalised



6.2. Results and Analysis 55

Figure 6.1: Perplexity of the N-gram models on test datasets

dataset ensured that all identifier names were included in the vocabulary on which

the models were run. When run on the raw dataset, the majority of identifier names

fell outside the vocabulary threshold of 10 and were replaced with OOV tokens. The

models run on the raw dataset could therefore suggest the OOV token whenever

any uncommon identifier name was called for and be correct in the vast majority

of those cases. The models run on the normalised dataset did not have this ad-

vantage and were forced to suggest the correct identifier name, particularly when an

already-declared identifier was referenced. In the test set, around 9% of tokens were

references to identifiers previously declared in the file. By flagging these identifier

references, it was possible to split the accuracy figures into accuracies on identifier

references and other tokens. The results of this analysis are presented in table 6.5.

All models achieved significantly higher accuracies on other tokens than they did

on identifier references. The result explains why the models performed worse on

the normalised dataset than they did on the raw. The particularly poor performance

of the LSTM model on identifier references also provided a strong motivation for

the introduction of mechanisms that could better equip the model to deal with the

long-term dependencies present in identifiers. The table also shows that the vast ma-

jority of the improvement in performance of the attention models over the LSTM
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Table 6.5: Accuracies on the normalised dataset split between identifier references and
other tokens

Model Top 1 Acc Top 5 Acc
Identifiers Other Identifiers Other

LSTM 2.1% 62.8% 4.5% 82.6%
LSTN + Att (20) 21.4% 64.8% 29.9% 83.7%
LSTM + Att (50) 30.2% 65.3% 41.3% 84.1%
LSTM + Att CS 27.3% 64.9% 43.6% 84.5%

model came from a significant improvement in performance on identifier reference

suggestions.

As a final point, the top 5 accuracy score of 82.62% achieved by the LSTM+Att

CS model on the normalised dataset bodes very well for a real code suggestion

implementation in an IDE. It indicates that the vast majority of the time, the actual

token used by the developer was in the list of the top 5 suggestions offered by the

model. Of course real code suggestion systems do not offer suggestions for every

single token, so by combining this with heuristics such as when to invoke the model

and a threshold on the models certainty, a very accurate code suggestion system

could be built.

6.3 Qualitative Analysis
This section presents an analysis of some qualitative test cases in order to gain a

better insight into the differences between the models and also a better intuition of

why the attention models performed better than the LSTM model. The focus of this

section is on the neural models only, as n-gram models have already been analysed

in past work and were shown once again in the previous section to be inferior to the

neural models on the task of code suggestion. The LSTM+Att(20) model was also

excluded from this analysis as it was identical to the LSTM+Att(50) model other

than the smaller attention memory.

6.3.1 Attention

Figure 6.2 shows a visualisation of the attention weights of the LSTM+Att(50)

model on the simple Python source code file of listing 6.1, in order to get a bet-
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ter insight into the differences between the attention models and the LSTM model.

The token corresponding to each step of the input sequence is presented on the y-

axis and the top 10 largest weights assigned in the attention memory are presented

in the grid. A darker shade of blue indicates a higher weight. Tokens which the

model predicted successfully (as the first suggestion after reading the previous to-

ken) have a ** next to them and interesting steps in the sequence are underlined and

tagged in red.

Listing 6.1: Code example used for attention visualisation

import os

c l a s s C l a s s2 5 3 :

def i n i t ( s e l f , a rg651 ) :

s e l f . a t t r i b u t e 9 4 3 = arg651

def f u n c t i o n 1 6 9 0 ( s e l f , a rg2004 ) :

va r4040 = os . p a t h . j o i n ( s e l f . a t t r i b u t e 9 4 3 , a rg2004 )

wi th open ( var4040 , ’ r ’ ) a s var2496 :

var3334 = var2496 . r e a d l i n e s ( )

re turn var3334

var25 = C l a s s 2 5 3 ( ’ / home / myuser ’ )

va r1200 = var25 . f u n c t i o n 1 6 9 0 ( ’ m y f i l e . t x t ’ )

p r i n t ( l e n ( va r1200 ) )

The step tagged as 1 shows the attention weights after reading the “=” token in

the line self.attribute943 = arg651. The model goes on to suggest the

argument arg651 correctly, which the LSTM model did not do on the same input

(it suggested “[”]). The visualisation shows that the majority of the attention weight

was on the output vector corresponding to the input token “.” after self.. While

this does not immediately make intuitive sense, it must be the case that the output

vector at this step contained some information that the model had captured from the
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Figure 6.2: A visualisation of the attention weights of the LSTM+Att(50) model on a nor-
malised code sample
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arg651 declaration of the previous line. This information was likely stored in the

LSTM cell memory, was output after reading “.” and was used to bias the model’s

suggestion to the correct identifier name. A similar unintuitive situation is observed

in the step tagged 6, where the model successfully suggested a class attribute (which

again the LSTM model failed to do), by placing attention on the “.” token between

path and join of the same line.

Cases 3, 4 and 5, seemed at first to be more intuitive. Here the model placed

a large attention weight on the preceding API or function name. This seemed to

suggest that the model used the name of the API or function as a clue to what might

follow. While it did not correctly suggest path following os. as the top sugges-

tion, it did correctly suggest join. However, the top suggestion it made following

os. was var4040, which does not make sense. Furthermore, the LSTM model

actually suggested this entire snippet correctly. In this case the attention weights,

which at first glance seemed to be more intuitive, turned out to hamper the model.

The step tagged 8 shows the weights in another instance where the model cor-

rectly predicted an identifier reference that the LSTM model did not. The weights

were again on the seemingly unintuitive preceding indent token. Again in step 9

a large weight was placed on the “)” token when the correct class name was sug-

gested. One possible explanation for this behaviour is to do with the dual-purpose

nature of the output vectors at each step. The output vector needs to encode suf-

ficient information to inform the model which token to suggest at a particular step

and it also needs to encode information that will be useful to the attention mecha-

nism in later steps. It is possible that the model keeps certain relevant information

in its cell memory and avoids outputting this information until signalled in some

way by a relatively common input like a period or bracket.

Finally, step 9 shows an example of a long-range dependency, where the class

name Class253 was declared 74 tokens before being referenced. This is outside the

attention window, but the model was still able to suggest it correctly. Again the

LSTM model did not suggest this class name correctly. This shows an example of

attention mechanisms improving upon an LSTMs ability to deal with long range
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dependencies.

The attention weights of the LSTM+Att CS model are presented in figure 6.3.

Here, the filtered attention window is presented along with the weights the model

assigned to the Language Model or Attention mechanism. The attention weights

were scaled by the weight assigned to the attention mechanism. Interesting steps

are again highlighted with red lines and tagged with a number (which may not cor-

respond to the previous figure). The first step of interest is tagged 1 and shows that

the model chose to place a large weight on the attention mechanism following the

snippet self.attribute943=. Furthermore, it placed a large attention weight

on the only argument to the function, arg651 which turned out to the be the cor-

rect suggestion. Tag 3 shows another case where the model placed weight on the

attention mechanism at a very appropriate point, after the “.” following self.. It

also placed the vast majority of the attention weight on attribute943, ignoring

the other non-attribute tokens in its memory.

Step 8 shows an example where the LSTM+Att CS model was unable to suc-

cessfully suggest a class name, which the LSTM+Att(50) model was able to do.

Step 6 also shows a case where the weight placed on the attention mechanism was

unexpected because the token following as would generally be a new identifier

rather than a reference to an existing one.

Overall, a glance at the LM/Att column shows that the model learned to place

weight on the attention mechanism at very appropriate and intuitive places where

one would expect an identifier reference to follow. These were following an =,

following self., the opening bracket of a function call as well as the comma

separating the arguments of the function call and following a return. In the ma-

jority of other cases, the model fell back to the suggestions of the standard language

model, which was already very good at suggesting Python syntax, code structure

and API references (this point is explored further in the next section). This allowed

the model to correctly suggest path following tag 2, which the LSTM+Att(50) did

not. It is also clear to see how the weights applied to the attention memory directly

correspond to the suggestions made by the model.
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Overall, the suggestions made by the 2 models on this particular example were

very similar, with the LSTM+Att(50) suggestions perhaps being slightly better by

capturing the long-term dependency of the class name. Of course no conclusion can

be drawn in this respect from this single example, and the situation was reversed in

other test cases involving long-range dependencies, one of which is presented in

the next section. What is fairly clear from this example though is that the attention

weights of the LSTM+Att CS model are far more intuitive and interpretable than

those of the LSTM+Att models.

6.3.2 Code Suggestion Evaluation

This section presents a small sample of interesting code suggestion test cases that

highlight the similarities and differences between the various neural models.

Figure 6.4 shows sample predictions involving language syntax or structure

from the LSTM model on the raw dataset. In each example, the code context is

provided, followed by a box indicating the top 5 predictions of the model and their

respective probabilities. In cases where a multi-token suggestion would be useful,

the most likely sequence of tokens, as determined by a beam search [64], is pre-

sented in bold. The results for the other neural models on these examples were

near identical (except of course with identifiers not being out of vocabulary in the

normalised dataset) and are therefore not presented. It is interesting to note that the

models correctly tracked levels of indentation and suggested the correct number of

dedent tokens in examples (a) and (c). The models also learned that functions

take self as their first argument when inside a class, but not when outside a class

as seen in examples (d) and (e). Finally, the models were aware that an except must

come after a try in example (f). Also of note in example (f) is that the models sug-

gested the correct exception type raised by shutil.rmtree. Neural language

models, including even the simplest version evaluated here, are clearly very well

suited to learning Python syntax and code structure

Suggestions for examples generated by the LSTM model on the raw dataset,

illustrating a few cases of common API usage scenarios are shown in figure 6.5.

Of particular interest is the suggestion of the correct function, read or write in the
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Figure 6.3: A visualisation of the attention weights of the LSTM+Att CS model on a nor-
malised code sample
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Figure 6.4: A sample of suggestions made by all neural models involving Python syntax or
structure

file IO examples (b) and (c). Suggestions by other models and on the normalised

dataset were mostly the same except for the 2 examples in figure 6.6 for the LSTM

model on the normalised dataset. The difference between example (a) in this figure

and example (c) in figure 6.5 seems to suggest that the identifier name f was a

strong signal to the model which could be exploited on the raw dataset but not

on the normalised one. The suggestion in figure 6.5 makes more sense as it is

unlikely that a file would be closed immediately without doing anything with it.

The LSTM+Att(50) model did fix this problem as illustrated in figure 6.7. The

figure also shows that the attention models were also much more certain about their
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suggestions of read and write for the two file IO examples. It was expected that the

attention weights would indicate a large amount of attention being placed on the ’r’

and ’w’ tokens, which would explain the difference in certainty of the suggestions.

Unfortunately an analysis of the attention weights for these particular examples

revealed that the attention weights were mostly spread out, with the largest being

on the as token. As noted in the previous section, the attention weights are difficult

to interpret. It is possible that the output vector at the as token captured some

useful information from the preceding ‘w’ and ‘r’ tokens which allowed the model

to improve its suggestions.

The next set of test cases involved identifiers or identifier references in some

form. Unsurprisingly given the quantitative analysis of the previous section, these

cases provided the most variation in suggestions between the models. The sugges-

tions made by the LSTM model on the raw and normalised datasets are presented in

figure 6.8 and 6.9 respectively. Cases (a) and (b) show clearly why the models per-

formed better on the raw dataset than the normalised one. The majority of unique

identifiers were out of vocabulary in the raw dataset, allowing the model to correctly

suggest the OOV token in these cases, which while technically correct, would not be

useful in a real usage scenario. On the normalised dataset, the models were forced to

suggest an existing identifier name, which the LSTM model was incapable of doing

on these examples. Cases (c), (e) and (f) investigate whether the model was capable

of generating unique identifiers. This is not something one would generally expect

of a code suggestion system and was therefore not taken into consideration in the

design of the models. The LSTM model did however make the useful suggestion of

init in case (c) and suggested the very commonly used pattern of using i as

a loop index in the for loop in case (e) on the raw dataset. The model was able to

complete the pattern on both datasets, suggesting the multi-token snippet var741

in range (NUM): on the normalised dataset for example. Finally cases (d) and

(i) show common patterns of identifier naming which the model was able to learn on

the raw dataset. On the normalised dataset, the model was not surprisingly unable

to suggest a novel identifier in case (d) and was not able refer to the argument in
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Figure 6.5: A sample of suggestions made by the LSTM model on the raw dataset involving
common APIs
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Figure 6.6: Differences in suggestions made by the LSTM model on the normalised dataset
involving common APIs

case (i). The difference between the suggestions of the same model on the different

datasets in case (i) suggests that the success of the model on the raw dataset was

more the result of learning a very common pattern from the training data rather than

learning to reference previously declared identifiers.

The suggestions made by the LSTM+Att(50) (and the LSTM+Att(20)) model

on the raw dataset were nearly identical and are not presented here, except to note

that the model was more certain about its suggestion in cases (b) and (c), and a

lot more certain in case (d). The suggestions of the LSTM+Att(50) model on the

normalised dataset are presented in figure 6.10. Cases (a), (b) and (i) show the

correct suggestion of recently declared identifiers. The model was capable of learn-

ing short-term dependencies in identifiers. Strangely, the model did not suggest

init in case (c), which the LSTM model did and it was also not able to suggest

the very common loop pattern in case (e). It was expected that the model would
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Figure 6.7: File IO suggestions made by the LSTM+Att(50) model on the raw and nor-
malised datasets

refer to the class name in case (h) as it did in a more complex setting with the atten-

tion weight example of section 6.3.1, however in this particular case the model was

unable to do so.

Figure 6.11 shows the suggestions made by the LSTM+Att CS model on the

same set of the examples. The model made the correct suggestions in cases (a)

and (b), albeit with less certainty than the LSTM+Att(50) model in case (a). In

case (c) it suggested init , the same as the LSTM model and an improvement

over the LSTM+Att(50) model. Cases (d) and (f) show that the model was unable

to generate novel identifiers, just like the other models. Strangely the LSTM+Att

CS model was also not able to complete the for loop pattern even though it could

fall back to essentially the same model as the LSTM when not using the attention

mechanism. The multi-token suggestion of case (g) was particularly interesting and

showed a very appropriate and common pattern where a format string (in this case

out of vocabulary) is used with a parameter after a % token. None of the other

models suggested this pattern.
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Figure 6.8: A sample of suggestions involving identifiers made by the LSTM model on the
raw dataset

On the whole, the identifier examples show that the LSTM model was unable

to refer to previously declared identifiers. The addition of an attention mechanism

either in the form of the standard language model attention or the new filtered atten-

tion for code suggestion allowed for references to identifiers in the nearby context.

This explains to a large degree the improvement in performance of the LSTM+Att

models and LSTM+Att CS as compared to the LSTM model.

A major motivating factor for the introduction of the LSTM+Att CS model

was to deal with the long range dependencies that exist in source code. Figure 6.12

shows the suggestions made by the LSTM and LSTM+Att (50) models on both the

raw and normalised datasets on an example of a type of long range dependency

that is very common in source code, that of a reference to a previously declared

class attribute. Both models suggested OOV for the raw dataset, which may be
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Figure 6.9: A sample of suggestions involving identifiers made by the LSTM model on the
normalised dataset

technically correct, but is meaningless, while the models were completely uncertain

of any suggestion on the normalised dataset. The distance of the dependency, while

outside the attention window of the LSTM+Att(50) model, is certainly within range

of real code as was shown in figure 4.2 of chapter 4, so one would reasonably expect

a code suggestion system to get these suggestions right. In fact the IntelliJ IDE does

correctly suggest the only attribute on the class as the most likely next token (see

figure 6.13).

Figure 6.14 shows that the LSTM+Att CS model did correctly suggest the class

attribute as being most likely. Figure 6.14 also shows the attention memory and their

weights for the input token “.”, as well as the weights assigned to the language

model and attention mechanism. The model not only knew that an identifier was

likely as evidenced by the bias towards the attention mechanism, but also that the
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Figure 6.10: A sample of suggestions involving identifiers made by the LSTM+Att(50)
model on the normalised dataset

only possible identifier to follow after self. was an attribute, as evidenced by

almost all of the weight being placed on the attribute172 token. While the

result was very promising, it would also have been good to have the class’s member

functions in the top 5 suggestions. It is unclear why the model did not include these

in the top 5, as they did appear in the attention memory. It may be the case that

the training data contained insufficient instances of class member functions being

referenced inside other class member functions.

In summary, all of the neural models evaluated in this work were capable

of making good suggestions in cases involving Python syntax or structure. The

addition of attention mechanisms improved suggestions slightly for common API

test cases and significantly improved suggestions in cases involving identifier refer-

ences. The LSTM+Att CS model was found to be able to deal with the long-term

dependencies it was designed for, while being more interpretable and more efficient
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Figure 6.11: A sample of suggestions involving identifiers made by the LSTM+Att CS
model on the normalised dataset

in its use of attention memory than the standard attention language models.

6.4 Results from Initial Attempts
This section provides a brief discussion of the results for the initial attempts at

model building prior to the LSTM+Att CS model, as discussed in section 5.4.

Figure 6.15 shows an attention visualisation, similar to figure 6.3 that was typi-

cal of the majority variations of the initial model that were tried. The majority of the

initial model variations very quickly learned to assign full weight to the language

model task and none to the attention mechanism. The attention weights showed

that the models tended to track one or two items in their memory, but this of course

made no difference to the final output as a result of the zero weight assigned to the

attention mechanism.

In some variations, the model did learn to sporadically assign weight to the
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Figure 6.12: Suggestions made by the LSTM and LSTM+Att models on a typical long-
range dependency example

Figure 6.13: IntelliJ IDE correctly suggesting the class’s members
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Figure 6.14: Correct suggestion made by the LSTM+CS Att model

Figure 6.15: Attention weights of a variation of the initial attempt
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Figure 6.16: Attention weights of a different variation of the initial attempt showing spo-
radic weights applied to the attention mechanism

attention mechanism, but this was done at unintuitive times and was coupled with

uniformly distributed weights over the attention memory and worse validation set

perplexity than the LSTM model. An example of this is shown in Figure 6.16

One speculation as to why the initial models always strongly favoured the lan-

guage model was that unlike in the standard attention for language models, the

input to the attention mechanism was very sporadic. As noted by Allamanis and

Sutton [46] on their corpus, 56 new identifiers were introduced per 1000 lines of

code. Combining this with even a conservative average length of 10 tokens per line,

would mean that only 0.5% of all tokens get flagged as being new identifiers that
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should enter the attention memory. It was thought that this sporadic nature meant

that the parameters relating to the attention mechanism (such as those determin-

ing the attention component of a split output vector), remained random a lot longer

than the parameters for the language model. This may have resulted in the model

learning to ignore the attention mechanism as its contribution remained a lot noisier

than the language model’s which was able to learn much faster. The LSTM+Att

CS model, on the other hand, would have been able to avoid this issue. Even early

in training, the LSTM+Att CS could make a meaningful contribution to the final

output probabilities. For example, consider the case where one identifier was in the

attention memory. The model, through the use of softmax, would have assigned

some not insignificant probability to this identifier’s token type. Since there was

only one identifier declared, it is certain that any reference to a pre-declared iden-

tifier would be to that identifier. The attention mechanism, through assigning this

identifier a probability larger than say a uniform probability over the entire vocabu-

lary of an untrained LSTM language model, would already be able to significantly

improve the model’s prediction.

The attention visualisation of the LSTM+Att(50) model of figure 6.2 also pro-

vided a hint as to why the initial model may not have worked. As noted in the

discussion of that figure, the attention weights assigned by the standard language

model attention mechanism were somewhat unintuitive. Even in cases where the

model was able to successfully suggest an identifier reference that the LSTM model

could not, the attention weights were focussed on points later in the input sequence

than the step at which the identifier declaration occurred. By forcing the model to

only look at identifier declaration points, it may have failed to capture the informa-

tion necessary to make these identifier references.



Chapter 7

Conclusions and Future Work

This chapter concludes by summarising the key findings of this dissertation as they

relate to the stated aims of section 1.3. A few avenues for possible future work are

then briefly discussed.

7.1 Conclusion
This dissertation looked into the effectiveness of modern deep neural language mod-

els on the task of code suggestion and in particular whether neural attention mod-

els would improve their ability to deal with the long-range dependencies found in

source code. The majority of past work involved small corpora and focussed on

static programming languages like Java. Since dynamic languages arguably have

the most to gain from an improved code suggestion system, this work used Python

as its target language. A new, large, Python corpus was developed using code ob-

tained from Github and will be made available to future researchers. An analysis of

the corpus showed that there were clear long-range dependencies, particularly when

it came to references to previously declared identifiers.

It was found that even what is now considered a fairly straightforward neural

language model, the RNN with LSTM cells, was very effective at making useful

suggestions, particularly when it came to Python syntax and structure as well as

common API usage.

The addition of neural attention mechanisms to the language model signifi-

cantly improved upon its ability to deal with identifier references, the source of
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long-range dependencies in source code. The LSTM+Att(50) model, a standard

neural attention language model, achieved a perplexity score 4 points lower than

the LSTM model. It also achieved close to 6 percentage points better top-1 and

top-5 accuracies.

Finally, a novel model was developed that allowed for multiple filtered atten-

tion mechanisms, each focussing on a different task. The idea being that by provid-

ing control over which embeddings entered the attention memory, rather than using

a fixed lagging window, the unique long-range dependencies of source code could

be more efficiently modelled. The model could also learn when to use each atten-

tion mechanism based on the state representation of the input sequence it had read

so far. To test the concept, a single task was used which involved tagging all iden-

tifier declarations to go into the attention memory. The model was able to identify

appropriate points at which to invoke the attention mechanism and was also able

to differentiate between the different groups of identifiers. For example, it learned

to use the attention mechanism following the tokens self. and assigned weight

only to the attribute identifiers in that case. The novel model significantly outper-

formed a standard attention language model with the same size of attention memory

across all metrics. Not only that, it was also able to outperform a standard attention

model with more than double the attention memory while also being much more

interpretable.

7.2 Future Work

The promising results of the neural language models, particularly the accuracies of

the various attention models, presents an opportunity to develop this work into an

actual code suggestion system integrated into an IDE. This was done, for exam-

ple, by Hindle et al. [1] who found their n-gram based code suggestion engine to

be superior in many respects to the heuristic-based one in the Eclipse IDE. Since

Python code suggestion systems are not necessarily as advanced as their static lan-

guage counterparts, this suggests that a code suggestion system for Python built

using more advanced language models should be very effective. In addition to this,
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language models are capable of providing more than a single token as a suggestion,

and are able to capture common idiomatic patterns as observed in the qualitative

analysis of chapter 6.

It should be noted, however, that the focus of this work was on the code sug-

gestion task, which is subtly, but importantly different from the code completion

task. Code completion involves the recommendation of a completion and extension

to the sequence, given a sequence of complete tokens and a partial token. As it

stands, the models presented in this work are incapable of modelling partial tokens.

The principled way to achieve this would be to use a character-level model that is

capable of modelling these partial tokens [65]. However, it may also be possible

to model the code completion task a special case of the code suggestion task and

use some variation of a hierarchical softmax [29] to restrict the suggestions of the

model to those containing a particular prefix.

Extending these models into a practical code suggestion system would also

require some further development, particularly around the unit of operation, which

is currently at the file level. Existing IDE code suggestion systems generally also

provide suggestions involving other files in a project, so the models would need to

incorporate project-level information to compete.

The novel attention model of chapter 5 also presents a number of unexplored

avenues for future work. In particular, it would be good to test other tagging

schemes and attention tasks. For example, one task could specialise in global iden-

tifiers, while another specialises in local identifiers. Tasks relating to different iden-

tifier groups could also be separated. For example, attribute references generally

only follow a reference to self or another object. While the attention model investi-

gated did learn to differentiate attributes from other identifiers, it could potentially

further benefit from being treated separately. It would also be interesting to evaluate

the effect of using different embeddings for the filtered attention memories. One of

the approaches tried in the initial model building attempts was to split the LSTM

output vector into two parts, one used for the language model and the other used

to drive the attention mechanism. Intuitively, this should work well as it allows for
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further specialisation of components, but this remains to be tested.

It would also be worthwhile investigating to what extent the results found in

this work also apply to other dynamic languages such as Javascript, which has a

syntax more similar to Java which was primarily used in previous work.

Finally, the works of Maddison and Tarlow [42] and Allamanis and Sutton [2]

provide another interesting avenue for further exploration. They modelled source

code using PCFGs, which makes sense given that programming languages have

formally defined grammars and unambiguous parsers. Recent neural architectures

such as the TreeLSTM of Tai et al [44] and the Recurrent Neural Network Grammar

model of Dyer et al. [45] provide some of the components that would be required

for a similar neural implementation.
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